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Kivonat

A felhőalapú számítástechnika fejlődése felgyorsította a felhőalapú megoldások integrálását
a szoftverfejlesztési és üzemeltetési folyamatokba. Azon vállalatok, amelyeknek nincsenek
meg a megfelelő erőforrásaik arra, hogy a föld körül bárhol biztosítsák szolgáltatásaikat,
felhasználhatják a felhőplatformok által nyújtott igényszerinti számítási erőforrások lehe-
tőségét. Ezáltal a kisebb vállalatok is versenyképesek maradnak a nagyobbakkal szemben,
és nyereségesek is maradhatnak az üzemeltetési költségeik óvatos menedzselésével.

Ez a folyamat, amiben a vállalatok elmozdulnak a saját maguk által fenntartott szer-
verektől a felhőalapú rendszerek irányába, helyet adott több olyan technológiának és me-
todikának, amelyek jelenleg a szoftverfejlesztést és üzemeltetést alapjaikban meghatároz-
zák. A DevOps egy ilyenfajta kulturális folyamat. Magában foglal több agilis gyakorlatot
és metodikát, amelyek a modern szoftverfejlesztés részei, míg a nagyrétű automatizáció
felgyorsította a szoftverek beüzemelését. Ezek összeségükben napi szintről órákra csök-
kentették a szoftver beüzemelési idejét, míg a minőségellenőrzés szempontjai ugyanúgy
teljesülnek.

Az ezen gyakorlatok által meghatározott fejlesztési folyamatot is nagy mértékben
automatizálták. A folytonos folyamatok (continuous practices) meghatározzák az IT csa-
patok napi munkavégzését. A csapatok gyors reagálási idejét részben a konténerizációs
technológiák használata alapozza meg, mely által egy absztrakciós réteg kerül a szoftver
és az azt futtató környezet közé. Ezáltal pedig a több konténerből álló rendszerek orkeszt-
rációja fölé is lehet vonni egy absztrakciós réteget, amire az egyik bevett technológia a
Kubernetes. A Kubernetest nagymértékben kezdték el használni, miután a Google nyílttá
tette a forráskódját, és manapság vezető technológia a felhőalapú üzemeltetésben.

Az előbbiekben említett folyamatok a szoftverfejlesztésben és üzemeltetésben, va-
lamint a fejlett felhőalapú technológiák részeit képezik annak, amit úgy hívunk, hogy
cloud-native. A cloud-native ökoszisztéma egy szorosan összefüggő szövete több, egymás-
sal kapcsolatban álló technológiának, amiknek a célja, hogy nyílt forráskódú megoldásokat
biztosítsanak a fejlesztési és üzemeltetési folyamatok tisztán felhőalapú rendszerbe való
migrálására.

Ennek a szakdolgozatnak a célja ezen tényezők leírása. A dolgozat első része a Ku-
bernetest írja le, a legalapvetőbb működését, és hogy milyen érdemben változtatta meg a
számítástechnika világát. A második rész egy gyűjtemény a fontosabb fejlesztési és üze-
meltetési metodikákból és gyakorlatokból, melyeket a modern IT csapatok az egyre inkább
online világban való hatékonyságért és produktivitásért követnek. A harmadik rész bemu-
tatja azt a Kubernetes alapokon működő, komplex cloud-native rendszert, melyben egy
egyszerű, a leírt gyakorlatokat követő folyamattal fejlesztett alkalmazás fut, amelynek a
célja, hogy tesztelhető legyen a működésén keresztül a felhőrendszer hatékonysága. Egy
teszteset is leírásra kerül, mely példaként szolgál a teljes cloud-native rendszer működésére
éles környezetben.
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Abstract

The evolution of cloud computing has accelerated the adoption of cloud-based solutions for
developing and operating software. Companies who might not have adequate resources to
provide their services to customers worldwide can utilise the powers of the cloud to access
computing resources on-demand. This enables smaller companies to provide competition
to larger ones, and to stay profitable by carefully managing operations costs.
This shift from privately owned servers to easily accessible cloud platforms has brought on a
set of new technologies and methodologies that define software development and operation
today. DevOps is such a cultural shift. It entails many separate agile practices and
methodologies that make up the modern development process, while extreme automation
hastens the deployment of software. These combined push down deployment time of new
software from days to hours, while keeping the same measure of quality control.
The deployment of software developed using these techniques has seen high amounts of
automation. Continuous practices define how IT teams deploy software on a day-to-day
basis. The quick response time of development teams is enabled in part by containerisation
technologies that abstract away the exact operating environment from the application that
is to be deployed. This means that the orchestration of multi-container systems can be
abstracted away as well, and one of the main solutions for this is Kubernetes. Kubernetes
has seen a large increase in usage after its open-source release by Google and today is one
of the leading solutions for cloud-based operations.
The aforementioned shift in development and operations culture, and the evolution of
cloud-based technologies form a part of what today is called being cloud-native. The cloud-
native ecosystem is a tight-knit group of interconnected technologies whose purpose is to
provide open-source solutions for the migration of software development and operations
into a purely cloud-based environment.
This thesis aims to describe these aspects. The first part describes Kubernetes, how it
operates on the most basic level, and gives an introduction into how it transformed the
IT world. The second part provides a collage of important development and operations
methodologies and practices that modern IT teams follow in order to be productive and
efficient in an increasingly online world. The third part introduces a complex, cloud-native
system based on Kubernetes that operates a rudimentary application designed using the
detailed practices to test the efficiency of this system. A test case scenario will also be
documented, showing how a completely cloud-native system can be run in a production
environment.
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Chapter 1

Introduction

The rapid evolution of cloud computing has completely changed the IT landscape. The
spread of resourceful cloud providers and the development of an increasing number of
open-source solutions has opened up the way for IT companies to achieve high-availability
and worldwide spread while staying cost-effective and agile in their development processes.
Cloud computing provides customers with on-demand computing resources, such as CPUs
and memory, while cloud providers handle differing amount of operative tasks to maintain
these resources, ranging anywhere from physical maintenance to operating system ad-
ministration. Companies that otherwise might not be able to afford computing resources
to provide their services thus can develop these services and rely on cloud providers for
resources. The affordable pricing of these resources keep well-performing companies prof-
itable, reinforcing this cycle as long as it remains the best course of financial planning.
In an increasingly online world, high-availability has become a critical operations require-
ment. Year-long availability, meaning that services are running and accessible by cus-
tomers, can be measured in percentages. A difference between 98% and 99% availability is
a single percentage point; however, it amounts to days in a year1. This kind of downtime
is unacceptable in critical services and undesirable when services are provided around the
globe, on-demand. This gives rise to two main questions: how to develop highly-available
services, and how to operate them in a highly-available manner. Cloud computing provides
the resources needed, only the development and operations tasks need to be accomplished.
This thesis takes a detailed look at some of the practices and technologies to do that. In
Chapter 2, an overview of the orchestration tool Kubernetes will be drawn regarding its
use in different areas of IT and how it operates on its most basic level. After that, Chapter
3 will detail some of the basic development and operations practices that are in use in the
industry to develop and maintain services in a highly-available and scalable environment.
This entails a focus on microservices in Section 3.1 as one of the main design choices, the
event sourcing design pattern in Section 3.2 for data handling in a distributed system, the
basic design requirements of a web application in Section 3.3, and the tools and practices
connected to the DevOps culture in Section 3.4. In Chapter 4, everything detailed pre-
viously will be demonstrated by using a rudimentary software solution, which is able to
generate logs and metrics connected to its functions, inside a Kubernetes environment to
generate feasible operating errors. These will be picked up by the monitoring solutions
integrated into the system, and the practices detailed will be used to react in an agile
manner and solve the underlying problems. Finally, in Chapter 5, conclusions will be
drawn based on the experiences gathered in previous chapters.

1Considering a year as 365 days, 98% availability is 7.3 days without available services. At 99%, it is
3.65, a difference of more than 3 days.
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Chapter 2

Kubernetes

In Chapter 2, Kubernetes will be introduced as the solution for orchestrating container-
based application architectures. Kubernetes is one of the main solutions for handling the
complete lifecycle of containerised software in cloud environments. It enables operators
of cloud-native software solutions to dynamically carry out their operations tasks with
increased automation. As Kubernetes has been used in this thesis, it is important to
detail specific aspects of its operation.

2.1 Introduction

Kubernetes is a container orchestration solution, which provides multiple layers of abstrac-
tion over the individualised management of container-based application architectures. It
provides tools and objects for the automated installation, operation and management of
individual containers inside clusters. These make the dynamic scaling and load balancing
of the maintained services possible.
The system inside Kubernetes is declaratively described by objects. Such objects are re-
sponsible for the management of Pods that comprise of containers, the networking fabric in
place to establish communication between objects, and other auxiliary objects performing
tasks such as certificate handling, proxying, load balancing or service discovery.
One of the advantages of declarative configuration is the possibility of "lazy automation".
The intended state must be defined by the operator and passed to Kubernetes through its
API server. One of the ways is by describing them in YAML files. The data in these files
is interpreted by Kubernetes, and stored as declarations of all the resources that it must
manage by provisioning compute resources to each object according to their specifications.
The control process of Kubernetes constantly monitors its underlying infrastructure for
the existence of these resources. If there is a difference between the intended state stored
inside these declarations and the actual state of the infrastructure, Kubernetes initiates
changes so that these two are converged in a process called reconciliation. For example,
at the very first second a Pod object might not have any containers running, and slowly
Kubernetes makes sure, that it resembles the intended state, with a fully set up container
and its system resources.
This way, should the administrator apply changes to a system by updating the configura-
tion, the intended state description is updated, and Kubernetes carries out the reconcilia-
tion all over again after noticing the differences between the declaration and the resource’s
actual state. Through this it is able to notice if there are no changes between the two,
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and whether there is a need for reconfiguration. The object declarations in Kubernetes
are only changed if a different specification is applied to them. Its idempotence makes it
possible to apply batches of configurations while expecting updates to only be carried out
where necessary. This makes versioning easy. For the sake of example, if all resources are
considered versioned objects, applying changes causes all these objects to implement them
and refresh their version numbers. However, not all might carry out any reconfiguration
as they are already at the desired state (i.e. there was no change in their description) but
the version still shows the most recent point. The whole batch can always be considered
the latest configuration in a version control system, as opposed to individually applying
each, with a high chance of human error and the possibility of losing track of the state at
which each resource should be.
The layered approach, the open-source code and the availability of an API also makes it
easy to make custom implementations of Kubernetes itself or its various services. IT teams
can make self-servicing distributions for automated development and deployment. Oper-
ators can provide an easy-to-use interface for development teams to provision resources
through the API, so that the operations team can focus on optimising and troubleshooting
deep-lying issues and functions in the infrastructure. This means that the development
and operations teams do not have to constantly interact as routine infrastructure tasks
are automated.

2.2 Usage

Kubernetes has seen a big increase in usage since its version 1.0 release in 2015. It has
gone through around quarterly to half-yearly updates since then and is at version 1.20 at
the start of 2021 with its end of support date set at December 2021.
In JetBrains’ 2020 developer survey [64], 60% of developers with knowledge in infras-
tructure development said they use Docker as a server templating tool. Out of these
respondents, 66% said they run their applications in containers, such as in the microser-
vices architecture, which is in some way used by 40% of the respondents. These trends
encourage the use of orchestration management tools, and Kubernetes is fairly popular,
being used by 40% of those who have knowledge of infrastructure development. This is a
huge slice of those answering, as the next most used technologies are tied at 14%. In Stack
Overflow’s popularity survey [67] the number of professional developers who use Docker
or Kubernetes stood at 39.2% and 12.9% respectively. Underpinning their popularity is
the fact that they are "loved" by more than 70% of those already working with them, and
out of those who aren’t actively using either one, 24.5% and 18.5% respectively expressed
a desire to do so in the future. The survey’s correlation chart also shows that these two
technologies are actually used together in a big portion of cases.

2.2.1 Case Studies

Next to statistical data there are many individual cases where the use of Kubernetes was a
conductor of growth and innovation. Companies from many sectors shared their individual
use cases where tools from the ecosystem helped solve problems that arose from increased
demand or the exponential growth in technological capacities [37]1.

1These are excerpts from the range of studies that can be found among the case studies hosted by
Kubernetes.
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The more obvious advantage is the agile infrastructure that development teams can be
provided by setting up a managed or self-servicing cluster system based on Kubernetes
or one of its custom implementations. Among others AppDirect, BlackRock, Pearson
and Spotify all use a Kubernetes related solution for ensuring quick deployments and the
iterative process of implementing small changes without costly time delays. The ease
of deployment and continuous integration also means that companies like Booz Allen
Hamilton or Babylon can immediately respond to changes in government regulations,
laws or professional demands that require fundamental changes in the services provided
by them for federal bodies or speed up clinical validation of their AI models, respectively.
Implementing such changes is easy, as the services are small, agile components of a whole
application and their testing, validation and monitoring is done in a decoupled system
that responds well to a moving environment.
Besides advantages in the development process, the possibility of moving away from in-
frastructure specific implementations helped users like CERN and Nokia in streamlining
their processes and speeding up their workflow. The diversity of tasks that Kubernetes
can handle shows here, as the former uses clusters to outsource computing tasks to hy-
brid and public clouds and also builds their distributed data storage using Kubernetes,
while the latter implements telecommunication applications that are used in a diverse set
of infrastructures, all requiring their own operational tools and methods. Portability is
a requirement that companies such as Babylon value, as they aim to provide services in
multiple geographical areas, and uniform, centralised access to their resources is a main
concern. The benefits are also expressed by numbers. Deployment times drop from days
or hours to a matter or minutes, the number of services built is exponentially higher after
integrating orchestration and the costs of maintenance, operation or migration are low-
ered as well all across the companies that shared their experiences. The scaling ability
of Kubernetes is an outstanding point of benefit in most of the cases and the commu-
nity surrounding the tool and its ecosystem actually drives companies to implement the
technology and actively contribute to its success.
From these statements we can deduce the following general attributes users find positive in
Kubernetes: agile and easily maintainable architecture, relatively quick setup and stream-
lined operation, a high degree of abstraction over the system in place for different sections
of the teams working with it, high availability and scalability, and the polymorphism it
shows when applied to a diverse set of problems. We can also see that while it has ways to
go, Kubernetes and the technology most often associated with it, Docker, will be defining
parts of the technological landscape for the years to come. With the solutions they offer
for highly available, scalable and agile microservice-based architectures, these tools will
be the basis for the evolution of modern software design and architectures.

2.3 Architecture

The Kubernetes architecture is a sprawling system of specialised and interconnected com-
ponents. A deep dive into it would be out of scope of this thesis. This section will provide
an overview of the top layer and describe the components that are needed for a fairly basic
but serviceable setup based on the work that serves as basis for this writing2.
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Figure 2.1: A basic Kubernetes cluster infrastructure.

2.3.1 Cluster Infrastructure

When a Kubernetes infrastructure is deployed, it is called a cluster. Figure 2.1 shows
the basic components of such a cluster. In this cluster two things work on the top level:
the control plane and nodes. Nodes are the working elements in the cluster, they provide
the resources and the environment for objects that enable services to be run. Nodes can
be run on physical or virtual machines. Their three components clearly describe their
responsibilities:

• kubelet: an agent that makes sure that containers are up and running in a Node,
i.e. the manager of container life inside a Node.

• Container runtime: a runtime client that is used for operating the containers that
are to be run on a Node. Possible third-party runtimes are containerd, CRI-O and
Docker CE on Linux [38]3.

• kube-proxy: a proxy that provides networking services for a Node.

By deduction from its working parts, a Node is the general management item that can
be used to bundle services run in containers and their necessary resources together and to
manage its life, monitor its operation, instrument changes and provide connectivity.
These Nodes are overseen by the control plane. There is one control plane with tools
handling management tasks and there can be multiple Nodes under its supervision. It
is responsible for instrumenting the Nodes’ environments and managing their operation,
reacting to changes in their states and scheduling. There are many in-built components,
only the most important are detailed here.
The control plane is separate from the other parts of the cluster and communicates through
the api-server component with Node instances as well as end users, while also providing

2The source of this section is the Kubernetes documentation [40]. The described version is v1.20, but
most of these concepts are generally applicable.

3At the time of writing a deprecation notice was issued for Docker CE after Kubernetes version 1.20.
This is a move towards favouring clients that use interfaces natively supported inside Kubernetes and a
general shift towards full compatibility [48].
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a way for components to interact with each other. Standardised function calls make it
possible to concisely manage and query Nodes. The kube-scheduler provides scheduling
functions for Pods that need Nodes to run on. It conforms to different requirements in
performance and resource provision and schedules the lifecycle of these Pods accordingly
using available Nodes. These nodes inside the cluster require controller processes to effec-
tively carry out intended changes and react to manipulation or failure. Generally, these
procedures aim to converge intended and current states; however, special controllers are
used for specific purposes such as endpoint connections or failure recovery. These are
handled by the kube-controller-manager. Finally, a persistent storage solution, such as
etcd acts as storage for data about resources inside the cluster.
The aforementioned elements make up the most basic cluster infrastructure that is able
to serve users; however, for different use cases, supporting services and objects have to be
used. Nevertheless, these components are always present.
An important point is how an operator can interact with this infrastructure. As mentioned,
the API server provides connectivity for the control plane. The API design is defined
according to the OpenAPI specification and on the most basic level server functions can
be used with REST calls; however, many command-line tools are available and client
libraries make programmatic management possible. One of these CLI tools is kubectl
[42]. It allows command-line interfacing with Kubernetes clusters for carrying out all
operations tasks that the system provides. API objects represent the resources inside the
cluster infrastructure and changes are effected through their manipulation. While these
are able to be interacted with individually, it is easier to provide the YAML declarations
mentioned before, and let the control plane handle convergence and management.

2.3.2 Kubernetes API Objects

Kubernetes API objects are used to describe the configuration of resources inside clusters.
These can be provided with YAML files through the API server. These files contain a
specification section that is used to describe the desired state by specifying the attributes
the object needs to have, e.g. a Deployment spec has a description of exactly how many
services it needs to oversee, these services can be configured as a set of similar Pods and the
number of Pods to be run can be given. In summary, API objects represent the resources
handled by Kubernetes. More precisely, "a Kubernetes object is a ’record of intent’–once
you create the object, the Kubernetes system will constantly work to ensure that object
exists. By creating an object, you’re effectively telling the Kubernetes system what you
want your cluster’s workload to look like; this is your cluster’s desired state"4 [41] One
thing to note is that in some cases these objects do not represent actual objects to be
created, they can also represent settings such as routing settings in Service or Ingress
controller objects, detailed later in this section.
The most basic object is the Pod. Pods are environments that house one or several con-
tainers. Pods provide storage and networking resources, such as storage volumes and a
single shared IP address for these containers. The scheduling and context handling inside
a Pod is shared across everything that might run in it, such as a host would be in a net-
working environment. This means that containers running inside them can interact with
each other without the need for routing between them because they share the networking
namespace. Additionally, they must coordinate how they interact with outside objects,
as they also share networking resources such as usable ports. An important feature to

4This section only aims to introduce object types in a basic manner as needed to understand this thesis’
underlying cloud infrastructure.
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remember for any operator is that these Pods are discarded if changes have to be made.
On reconfiguration it’s not the old Pod that is being recalibrated but a new Pod being set
in its place with the new configuration, assigned a new IP address and if not provided per-
sistent storage volumes, new storage. This brings with itself the need for care in designing
the applications and challenges with the dynamic handling of Pod lifecycles.
Pods are one-off objects by themselves, they can be set to automatically restart upon
failure; however, they are scheduled only once to a specific Node. This means that once
allocated to a Node, it will run as long as it does not suffer failure and is terminated
or its underlying resources are not taken away, like when the Node loses the computing
resources needed to maintain the Pod. They are not recreated automatically in this case,
and even after recreation, the Pod might be similarly configured but it will be a different
Pod. This means the operator has to supervise them and handle problems manually in
most cases. Other than handling Pods individually, ReplicaSets and Deployments can be
used. A ReplicaSet contains a Pod template declaring the specifications that its Pods
must have and the number of Pods it must maintain. It ensures the existence of a set
amount of similarly configured Pods it identifies by preconfigured selectors. While this
object provides an abstraction over individual Pods, it is easier to maintain a set of Pods
with Deployments. They offer additional functionality for managing and reconfiguring sets
of Pods. A Deployment maintains ReplicaSets. It contains the same Pod templates, the
number that must be maintained of those and a selector for figuring out which Pods it must
manage. It is also capable of rolling out the deployment of these in a controlled manner,
managing a steady initialisation instead of pulling up all at once. The rollout history is
kept so that previous rollouts can be reinstated in case of problems. If the Pod template
is modified, a new ReplicaSet takes the place of the old one. The graceful handling of
the movement of these Pods from the old ReplicaSet to the new one is possible in the
same manner. This works by scaling down the Pods of the old one and steadily filling
up the spot with Pods from the new ReplicaSet. These objects make dynamic failover
of services possible. By declaring the template (number of Pods, intended specification,
file images, etc.) they have a source of intended state which they can follow and handle
failures effectively. A ReplicaSet of n Pods will always have n Pods, either in an active
state or under initialisation due to a formerly active Pod failing or being reconfigured and
replaced.
In Listing 1 an example Deployment of Nginx instances can be seen from the Kubernetes
documentation [39]. In essence, the YAML file stores key-value pairs, so stored attributes
can be referenced by their dotted notation. Data inside metadata contains information on
the API object. This declaration makes a Deployment called "nginx-deployment" (meta-
data.name). Data inside spec contains configurations the Deployment must use. The
spec.replicas value instructs the managed ReplicaSet to maintain three instances of Pods.
The spec.selector.matchLabels value (here it is "app: nginx") contains key-value pairs
which each Pod must contain for them to be connected to the Deployment object, i.e.
establishes ownership by the specified Deployment. The spec.template declares the tem-
plate specification of the Pods that are supervised by the Deployment, the intended state
at which they must be. Inside this, the metadata serves the same purpose as before, with
the addition that labels must contain the selector pair mentioned. The template.spec con-
tains the specifications for the Pods to be run such as its name, the name and tag of the
software image and the ports that must be open.
This dynamic process, however, makes it hard to implement a static IP addressing scheme,
as a new Pod is given a new IP address on initialisation. A Service object solves this
problem and also provides load balancing. A Service object can be specified with different
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1 apiVersion: apps/v1
2 kind: Deployment
3 metadata:
4 name: nginx-deployment
5 labels:
6 app: nginx
7 spec:
8 replicas: 3
9 selector:

10 matchLabels:
11 app: nginx
12 template:
13 metadata:
14 labels:
15 app: nginx
16 spec:
17 containers:
18 - name: nginx
19 image: nginx:1.14.2
20 ports:
21 - containerPort: 80

Listing 1: Example Deployment of Nginx containers.

selectors which can point to metadata in Pods and the object will provide stable network
addressing to and load balancing between them. This object will have its own IP address
as well, but it can also have a DNS entry. If DNS functionality is present inside the
cluster, Pods that require other Pods not behind their own Service can use the Service’s
DNS name to query its IP address. After connecting to it, the Service then routes to
the Pods behind it, establishing connectivity between Pods behind different Services. It
does not have to change with the Pods that it connects to. This way a set of Pods with
attribute "x" configured for them can change in whatever way, as the Service that is set
to discover Pods that have "x" configured in their metadata will provide routing to those
Pods at any given time. From the outside in relation to this Service, its IP address x.x.x.x
can always be used to reach the Pods behind it, as no matter the permutation of the Pods’
IP addresses, the static Service handles discovery and routing. This routing will happen
in a balanced manner, all Pods will receive a share of the network traffic.
In Listing 2 an example Service has been declared for the previous Deployment. As before,
metadata contains information, spec contains configurations. The metadata.name value
will be the DNS entry that can be queried to reach this Service and thus the Pods covered
by it. The spec.selector has the key-value pair which is used to identify Pods that this
Service must cover. In spec.ports a list of key-value pairs define firstly "port", which is the
port the Service opens to the outside, and secondly "targetPort", which is the port that
traffic from "port" will be routed to. In this example these are numbered; however, it is
advisable to name the referenced ports and use those. Multiple of these pairings can be
made, opening up more ports. The used transport protocol can be defined as well.
The aforementioned are the basic fabric that enable the cluster to provide dynamically
scaling and highly-available services, illustrated in Figure 2.2. These cluster resources
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1 apiVersion: v1
2 kind: Service
3 metadata:
4 name: nginx-service
5 spec:
6 selector:
7 app: nginx
8 ports:
9 - protocol: TCP

10 port: 8080
11 targetPort: 80

Listing 2: Example Service for Nginx Deployment.

Figure 2.2: Visualisation of the cluster setup defined in Listings 1
and 2.
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handle the lifecycle of containerised applications, the management of their resources and
communication between distributed components. Additionally, Kubernetes allows for cus-
tom resources to be included inside a cluster setup. These objects are third-party software
that need to provide their operation workflow through Operator API objects that describe
the maintenance and operation of the software they were written for. The following two
are examples that have been used inside this thesis’ cluster environment for additional
functionality.

• An Ingress Controller is an object that provides connectivity between the public
internet and the inner network of the cluster. It is the way of opening up services
through an ingress resource like nginx or other provider specific technology. Routing
can be configured so that different paths open different services. By default, HTTPS
is required, so a method of certificate handling has to be in place.

• A Certificate and a Certificate Manager object are resources enable dynamic man-
agement of certificates. The former describes the domain attributes that have to be
registered and the latter can handle the automatic requisition of certificates with
preset Certificate Authorities and certificate attributes, e.g. test certificates for pro-
duction testing.

On top of the mentioned elements in this section, Kubernetes provides a lot for operators
and developers alike to make cloud-native systems and services. It can be configured and
implemented in different ways conforming to different workflows and environments. It is
a tool that can propel information technology towards cloud-native operation.
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Chapter 3

Software Design Techniques and
Technologies

A main part of this thesis’ practical work is to carry out the development of a simple
software, so that it can be used in other parts of this thesis. The aim of this software,
housed in a cloud infrastructure, is twofold:

• adhere to the best practices of cloud-native development and design so that the
application would showcase the advantages of the approach while operating such
software in a cloud environment and

• implement metrics exposition that would make metric collection and monitoring
possible, and log generation while conforming to the scalable and dynamic nature of
cloud-native operation.

In Sections 3.1 to 3.3 the design patterns will be detailed that were used in the development
of this thesis’ application. As stated, it was an expressed goal that this software would be
implemented in a way that would conform to cloud-native principles. Modern computing
solutions enabled new methods of service delivery and these novel practices presented
questions that had to be solved in a different way. The way data is stored, accessed and
kept consistent, the decoupling of business logic and the optimisation of process handling
are some of these.
Questions about the efficient way of developing and deploying services as a team effort
were also raised. The guidelines that must govern the development of applications that are
to be used entirely in a cloud-based environment and managed with tools that handle the
lifecycle of such applications dynamically have been aggregated over years as commonly
accepted principles. These observations and recommendations have been made with the
experience that comes from the increasing growth and implementation of the cloud infras-
tructure. Section 3.4 will cover the general principles, those that emphasise a framework
which should be followed by any project aiming to be cloud-native, so that they can utilise
all the advantages of such environments while avoiding common problems and mistakes.
Finally, in Section 3.5 a summary of all principles detailed in Chapter 3 will be aggregated
into a framework that defines what cloud-native development means in relation to the
software development work carried out in this thesis. This thesis does not have the scope
for aggregating and comparing all the principles and patterns, this description will aim to
describe only those that have been chosen and utilised.
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Figure 3.1: An example layout of the monolithic architecture.

3.1 Microservices Architecture

The microservices architecture aims to streamline the workflow of modern software de-
velopment teams, which are made of small, agile groups, responsible for a single product
throughout its whole lifecycle. That cycle is self-repeating, new problems spur on develop-
ment towards new directions or deeper in the methods these teams already employ. This
agility and the ability to quickly append or modify, and then release their product would
be hard to achieve if their products were interdependent on other teams and products.
This approach to software development contrasts the monolithic approach, exemplified
in Figure 3.1. This covers software built as a single executable that can provide multiple
functionalities, i.e. multiple services. These software are run as a single process, with mul-
tiple threads where needed. A characteristic of this approach is that any time a change
is made to a function included in the software, the whole executable has to be rebuilt,
tested, and released. The development of each individual function has to take the develop-
ment of other included functions in regard, which causes delays or incompatibilities when
changes need to be introduced at a moment’s notice. The monolith can be developed with
agile methodologies; however, using microservices to build an ecosystem of independent
services cooperating with each other greatly reduces stress on the teams working on their
applications and comfortably aligns with cloud-native development and operation.
Martin Fowler and James Lewis have discussed microservices in detail on Fowler’s blog
[58] and the trio of Michael Hofmann, Erin Schnabel and Katherine Stanley [61] has
written many observations about the best practices to be followed by teams working on

12



Figure 3.2: An example layout of the microservices architecture.

products employing this architecture. Their works provide the basis for this compilation
of characteristics and recommended procedure1.

3.1.1 What Are Microservices

Based on the summary by Fowler and Lewis, microservices are standalone services running
their own processes aimed at performing a well-rounded functionality. They communicate
through lightweight APIs with HTTP and are able to be deployed independently with
minimal central supervision. This suite of interconnected services is the microservices ar-
chitecture. Hofmann et. al. break this down concentrating on "micro". The word micro in
microservices does not denote the size of the codebase but rather the purpose of the service.
"Microservices should do one thing, and do that one thing well" [61, Page 4]. This means
that during the design process the purpose of the application should be decomposed into
smaller, interconnected purposes, up to the point where small, well-defined, autonomous
and independent services make up the application’s ecosystem, such as the one illustrated
in Figure 3.2. In the simplest terms, microservices are a way to compartmentalise the
development of large applications by delegating the development of well-defined tasks to
small teams.

3.1.2 Independence and Autonomy

For Fowler and Lewis, the monolith has proved difficult to continually develop, as even
though changes would have to be made only to a component of the application, the
whole structure had to be released and integrated after any kind of changes. Scaling also
requires considerably more resources. A monolithic application is better scaled vertically
by increasing resources of an already running instance; although, this is costly. The
microservices architecture has been drawn up to solve these problems. The microservice
approach enables interdisciplinary teams to work together on defined business capabilities.
When teams work on their own architectural layers, cooperation between teams for the

1While not directly influencing this work, Chris Richardson’s blog [69] and the blog produced by F5
related to Nginx [21] are main sources of guidelines relating to microservices patterns
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optimal handling of implementation challenges is hard, as all decisions made by the team
has to be relayed to other teams, taking time away from development. However, with small,
cross-functional teams individual services can always be developed in the most optimal
manner. With dedicated specialists, all architectural layers can be built according to the
needs of the well-defined business problem at hand. The fact that the technologies used
are not centralised also encourages ownership of product by their development teams, they
can make the best decisions in the development lifecycle of their service.
As of Hofmann et.al, autonomy and independence are important features of microservices,
as changes implemented can have widespread influence if not properly bounded inside
individual services. These microservices should encapsulate implementation details and
data structures, data sources must be private to each. This enables the developers to
frequently refactor the service as inevitable changes have to be made, which is a strength
of the architecture due to its independent structure, not a setback. Such a decomposition
of services makes way for individualised implementation. This in turn enables teams to
introduce solutions that best conform to their private requirements. The fact that from
logic to data representation all aspects are in the hands of the developers enables the system
to be polyglot. Polyglot means that all services can use the exact language and data service
that they think best for their purposes; however, the system must operate on the basis
that not one service knows the implementation details of another when communicating
with it. Nevertheless, on the design side, it is advisable that the code base of the services
share more than standard libraries, if possible, so that the functions can be implemented
as independently and concise as possible. If a set of specialised libraries is used in at least
a few places for example, the functions provided by those should be examined and possibly
moved into its own microservice.

3.1.3 Communication

Fowler and Lewis define the frame of communication methods to be used in this archi-
tecture. Microservices use simple communication protocols such as HTTP, so that there
is minimal logic in the method of transmission itself. The business logic is based in the
loosely coupled and cohesive microservices. Even there, the basic function is receiving a
request, applying logic and producing a response. On the practical side as of Hofmann
et.al., illustrated in Figure 3.3, the communication methods can be synchronous, REST-
ful protocols or asynchronous message queue protocols, and it is always best if they are
language-agnostic. The same can be said of data formats with JSON being a favourite.
The decision between synchronous and asynchronous communication methods should be
made considering the exact requirements of the system. The specifics should be clearly
documented and leniency should be exercised in handling payloads and headers as new
consumers could always join, which are not up to date on the current state of communi-
cations.
The services use APIs to facilitate this communication. When a service needs to interact
with another service, it uses the service invocation method provided by its environment
either on the server or client side, such as an API gateway or sidecar processes running
next to the service itself. The amount of preconceived functionality from these should be
minimal, while the handling of errors should be as holistic as possible. The microservices
architecture places great emphasis on fault tolerance, as a simple, unexpected fault in one
implementation could bring down the whole stack if not handled gracefully. Because the
system is distributed, errors are encountered in communications between microservices
or by internal exceptions, only the former is related exclusively to the architecture. The
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Figure 3.3: Two of the possible communication patterns in the
microservices architecture.

propagation of errors should also be avoided, errors have to be handled locally so as to
not introduce additional complexity with regards to system-wide fault tolerance. The best
practice is to assume that bad requests and errors will always happen, so as to preemptively
handle bad use cases. Asynchronous communications is generally recommended, except in
cases where acknowledgement is necessary, thus event-based protocols are a good choice
for distributed systems. Fault tolerance depends on the implementation of services, as
they are the ones handling faulty communications. The manner of failure handling should
depend on the communications method used; however, generally these should ensure that
changing an API does not cause breaking errors inside the system.

3.1.4 Data Management

The distributed management of data introduces challenges with updating the data stored.
As each microservice stores its data privately, distributed transactions would have to be
made in order to consistently update data; however, this is very hard to implement. Fowler
and Lewis propose transactionless coordination of data updates that might span more than
one microservice, where interactions and compensating operations handle changes in data
stored or errors encountered. This way a degree of eventual consistency is present inside the
architecture, but the benefits of agility can outweigh the costs of momentarily inconsistent
data. Hofmann et.al also conclude, that each microservice should handle its own data
privately, thus it should have its own data store. This enables polyglot persistence, the
state where data is persisted in a multilingual environment. Every data is stored in a way
that best enables its management, with a wide variety of choice between SQL and NoSQL
databases, as shown in Figure 3.4.
In this architecture, because of its distributed and heavily specialised nature, data trans-
actions can span multiple services as mentioned by Fowler and Lewis as well. However,
joining data from multiple sources is hard and consistency has to be ensured. This can
be handled in multiple ways: adapter services handling such transactions, introducing an
event-driven architecture with publish/subscribe communication pattern or merging ser-
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Figure 3.4: Individual data handling by microservices.

vices based on the frequency of event exchange. An example for an event-driven solution
is event sourcing and Command Query Responsibility Segregation, described in Section
3.2. Whatever the solution, data stores and services must remain decoupled and data
consistency ensured2. The CAP theorem3 provides a point of reference for the effect of
design choices. Teams have to consider the costs and benefits of either the necessity of
handling eventual consistency or being unable to provide the best availability.

3.1.5 Handling Failure

Fowler and Lewis concludes that the build of the architecture also means that developers
have to prepare for one or more of the microservices failing. Real-time monitoring is an
important part of this system, as problems have to be noticed and acted upon by the de-
velopment team. The failure of a service can seriously impact the users’ experience with
the application. Because of the size of these services and their independence, scaling them
can solve problems stemming from overload. As of Hofmann et. al., microservices are
designed to be easily scaled horizontally by running new instances rather than increasing
provisioned resources. Dynamic provisioning is the ability of a microservices-based system
to scale applications according to user load and make sure that resources are always opti-
mally utilised, i.e. reserved for only the necessary amount of running applications. Based
on provision regulations and momentary utilisation, the system scales the system accord-
ingly. This also ensures that unhealthy or dead instances are dismantled, so that they do
not use system resources. This is made possible with the use of health checks, functions
inside the applications or their runtime environment that indicate functionality. When
operating a microservices architecture, it is important to be able to ensure communication
between services, to scale each service according to momentary load and supervise the
health of the services, ensuring that failover happens. This is done independent of the
service’s running process and introduces the problem of other parts of the system discov-
ering these new services, but also the possibility of dynamically load balancing between

2For more detail on the possible structures of data persistence see Hofmann et. al. summation [61,
Chapter 5] or Chris Richardson’s collection of patterns for data management [69].

3Formally introduced by Eric Brewer, it states that because tolerance of network partition is a necessity
due network errors, a trade-off must be made between the availability and consistency of the data stored
inside a system. For an elaborate discussion see his article on InfoQ [47].
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them. A service registry solves these, and the following aspects have to be provided either
by the register or the microservice when using this method:

• registration and deregistration of services,

• heartbeat signals that indicate a healthy service

• and service discovery for components of the system.

The system changes dynamically and under heavy, fluctuating load, frequently. Logging
and the use of metrics is fundamental in this architecture, as well as any other system, for
noticing problems in a timely manner and collecting observations for further development.
However, the fact that many services might interact makes traceable logging of interservice
events indispensable. Singular log entries based on an individual system only helps in
figuring out errors with the service itself. When multiple services’ interaction causes an
error, one service’s response to a faulty action might not tell how much influence the action
of another service has on its own operation. Troubleshooting problems that span multiple
services is made easier if connected events are bounded, such as by an identifier. A log
collection solution also should be integrated so that these logs are easily aggregated and
observed. If data visualisation tools are used, having a single source can make reporting
easier. The dynamic lifecycle of both the services and the collector should be taken in
regard and connecting dynamically changing service instances to a log collector has to be
solved.

3.1.6 Summary

Such a complex system puts a lot of operative strain on its developers and operators, it is
proposed by Hofmann et. al. that a good level of automation has to be introduced. With
so many moving parts, understanding and keeping the structure in mind is hard, so checks
introduced in automated integration and delivery systems help keep the work of indepen-
dent development teams streamlined. Detailed discussion of ways and methodologies for
automation can be found in Section 3.4.
The microservices architecture is a response to frustrations by developers regarding the
increasing speed at which they must develop monolithic software. The possibilities pro-
vided by cloud computing also means that operating large structures as single units is
not always the best method. Martin Fowler does not purport this architecture to be the
solution, rather a way for software development to evolve. In his cited writing he handily
provides insights into the effect his mentioned methods can have while integrated into
a monolithic development structure. Nevertheless, microservices are popular. According
to JetBrains’ 2020 survey, around 40% of respondents work with microservices in some
way [64]. As summary, Hofmann et. al. list four general guidelines that should drive
the design of microservices, so that they are best placed to carry out their purpose with
optimal performance [61, Page 89]:

• A microservice must be independently deployable.

• A new version of a microservice should be deployable in minutes rather than in
hours.

• A microservice must be fault tolerant, and should prevent cascading failures.
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• A microservice should not require any code changes as it is deployed across target
environments.

If these points can be fulfilled, the system maintained by the development team is ready
for the agile methodologies employed by modern software development teams to quickly
release and maintain software solutions.

3.2 Event Sourcing

Event sourcing is an architectural pattern which was first introduced by Greg Young
in 2007 as expressed by Young himself in a conference talk describing the pattern [77].
Martin Fowler4 [57], Chris Richardson5 [69] and Young have elaborated on it over the
years, finding ways to make event sourcing a popular method of designing large-scale
systems with a heavy emphasis on auditability, the ability to separate effects from their
originating events or retrospection. This summary of the design pattern is a general
overview of different viewpoints based on their works. Descriptions of the aspects of
domain-driven design are based on Eric Evans in his conference speech at Domain-Driven
Design Europe 2019 [52].
The whole architecture is based on elements from event-driven and domain-driven design;
however, it can be standalone and not dependent on them. Data is represented by inter-
connected events stored inside streams and state can be derived from the sequence of these
events, illustrated in Figure 3.6. According to Young, all businesses that have matured
to a point where they are strictly liable for data they handle are naturally event sourced,
and as such, the accountant’s example is used by him frequently. Accounting does not
handle accounts such as bank balances as states updated inside a ledger but rather as
a summation of previous transactions that have led up to the point that is being inves-
tigated. If there is a discrepancy between what the accountant’s customer believes and
what the accounting shows, not having a backlog means there can be no way of proving
the truthfulness of the current state. However, by storing the events that lead up to the
purported state, a common source of truth can be established and every state will have a
descriptive chain of linked events that serve as a basis for the claims of the side liable for
handling the data. Event Sourcing puts this into practical terms in software design.

3.2.1 Practical Design of Event Sourced Systems

An architecture based on this design has an event store and services that utilise data inside
this store. This event store has to have two capabilities: sequenced storage of data and
implementation of the subscription pattern. This means that this store can be the single
source of truth inside this system as it has the ability to persist and distribute every event
that happens. While the services surrounding this store can have their own database (and
they mostly do in memory at the minimum), any state is in a way a derivative of accessible
events provided by streams inside the event store. This basic structure is illustrated in
Figure 3.5.
The sequential read of the stream can be implemented in different ways, and APIs to differ-
ent message broker and message queue solutions provide methods for using this technology,

4Contributed to the codification of the design with his work, such as his personal blog.
5A proponent of the microservice design principle with a separate place for event sourcing on his personal

blog.
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Figure 3.5: Example microservices exchanging data using an
event store and the publish/subscribe pattern.

such as RabbitMQ, Kafka Streams or Redis Streams. The technological background of
these are different because they were designed to reach different performance goals, these
APIs were built on top of an already established solution. Care should be taken when
choosing one, as while it is true that all are able to carry out tasks required of an event
store, they fulfil these differently, especially in this aspect the manner in which they dis-
tribute and persist data. Greg Young is part of a project that aims to bring together all
positive aspects of these and similar solutions and provide the exact tools that make an
event store effective, the EventStoreDB6. Some of the attributes that make it work out
of the box for event sourcing projects according to their website: the in-built versioning
of events and the possibility of using expected version arguments in calls to the store to
ensure consistency, the various types of subscription models provided and the idempotence
of applying events to a stream, in effect ensuring that there is no problem with duplicate
events, a possible problem in distributed systems.
The services around this store implement the domain logic that interpret the data that
is stored there. This approach easily overlaps with the microservices architecture. For
most, only the domain logic has to be distributed in these services, and even then, only
the ability to interpret this logic is necessary for all the services to have. If a service
only consumes events, there is no need for backwards compatibility, as it only reads the
state of the system. Where this is not the case, however, special care has to be taken so
that the events emitted by the service conforms to the logic that the system operates by.
This is one of the pattern’s main strength and a disadvantage as well, as this can prove
to be a steep learning curve, while providing ways for already up to speed developers to
implement domain logic not easily described in traditional, column-row data stores such
as SQL-based databases. Where the latter might require layers of abstraction between the

6The project can be reached on their official website [35] and the code can also be browsed on GitHub
[34].
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Figure 3.6: A sample event stream with example for the Com-
mand - Event structure.

implementer and the domain representative7 in data representation schemes, the former
can bring them together, and by using a shared domain language8, make the iterative
process of development faster and easier, as the representation is based on this common
language.
Martin Fowler mentions9 [59, Part 1, Chapter 2; Part 2, Chapter 9] two ways to imple-
ment the connection of events and business logic: the transaction scripts and the domain
model10. The two are fundamentally different; however, they share the same purpose. The
service that uses them interprets a user intent and translates it into an event. That event is
sent to the event store and distributed to all interested services where they are interpreted
and acted upon. This in turn can cause other events, causing their own consequences.
This makes it easy to abstract away the method of implementing such logic, employing
the grammatical structure from domain-driven design: there should be a command (a
verb) and an event (a noun). The command can be tied to user intent11, essentially cov-
ering the actions that the user can perform via the service. At this stage, the intent goes
through the business logic, encountering all the logical checks implemented. If the intent
is actionable, the event is formed and emitted, thus making the intent into reality inside
the system. This is a good overview of how services and the event store can interact.
No matter the approach, the state should be stored inside the service. A logical represen-
tation that is updated according to the events that the service subscribes to allows local
modelling of the system’s state. The above mentioned two logical implementations are
tied to this aspect, state can be stored by objects or other types of structured data. This
way the logical checks that allow or deny an action can be executed on readily available
data, without the need for constant read requests to the event store. Two problems are
raised by this, however. Firstly, the state represented by a service in a small time period

7Domain representative is the person with knowledge in the field the implementer services. Examples
are an accountant, a logistics professional or a stock broker and the developer working on solutions for
them. Software solution patterns might not match domain patterns important for a lot of fields.

8An aspect of domain-driven design, where the domain representative and the software developer make
and share a common language that has to guide the development of the services provided.

9A short writing accessible on Fowler’s blog. [54]
10The former contains the logic in scripts that are executed based on the type of transaction, the latter

contains objects that represent individuals that are meaningful to the system such as a whole institution
or a single order form.

11Intent has no additional meaning here or connection to intent-based patterns, it is only a turn of
phrase.

20



might not actually conform to the state that the system is actually at, due to another ser-
vice instrumenting changes via their own events. The ripple effect would eventually reach
this service and converge its system model to the actual state. Nevertheless, information
supplied by this service is inconsistent for a period and eventual consistency is part of the
architecture. Secondly, the business logic operating inside this service might act on data
that is not in a consistent state and this should be carefully mitigated. Versioning helps
in this case. If an action is to be initiated, version checks should always be a part of the
transaction. If the version of the stream that contains data the action intends to append
is different from what is kept by the service, error handling processes should be imple-
mented based on the kind of difference between the service’s state and the actual system
state. If the system state is newer than the service’s state, the actualisation of the service
through reading the stream and rerunning or denying the action can help. If it is the
opposite way, the possibility of faulty operation should rise and the discarding of unregis-
tered events should be handled. After that, the service’s state should be re-synchronised
and the action should be rerun or denied.
In the previous paragraph, the problem with too many read requests was raised, and
blocking the single source of consistent data counteracts the advantages of the pattern.
Additionally, since reading data is reliant on the logical evaluation of sequential events,
querying the state of the database is difficult. So, if frequent read action is required
to carry out services inside the system, the separation of read and write models can
help. The Command Query Responsibility Segregation (CQRS) is a pattern that works
in tandem with event sourcing. It stipulates that the system has to include a read-only
model responsible for providing data that represents the system’s state according to the
changes appended to the write-only model. This read-only model separates the concerns
of servicing read requests and transacting write requests, and also allows for different types
of view representations without changing the write model. However, implementation of
this pattern also has to consider eventual consistency [70].
The aforementioned can all be a part of the event sourcing pattern; however, they are
borrowed from the patterns that serve as a basis for it, the domain- and event-driven
design patterns. Event sourcing provides other benefits that set it apart from the rest:

• The current state can be discarded anytime and rebuilt from the event store, reaching
the same state as before. It is also possible to create snapshots in past time by
configuring the moment up until which the state needs to be observed.

• If there is a mistake in the sequence of events, there is no need for corrective trans-
actions as the state can be rebuilt up to the point of mistake and taken from there.
This does not only mean that an incorrect event can be fixed, but also that events
in the incorrect order can be replayed to build the correct state.

• Data stores based on event sourcing can provide a base for auditing the data kept,
as it stores the stages data goes through rather than the actual state. It provides
insight into cause and effect sequences for root-cause inquiries, enables retrospective
analysis of possible outcomes.

• The store provides an observable source of data, where information flows in a single
direction with clearly defined responsibilities.

• The fact that events are versioned means that a service can start, restart or reconnect
anytime and ensure that information stored by it is up to date by synchronising itself
with the event store.

21



Event sourcing is a performant pattern for fields that attribute increased importance to the
manner in which data changes. Combined with the advantages that the connected design
patterns bring, systems based on it can provide added value to the consumer, as their
domain knowledge can be implemented in more depth. This in turn makes the data stored
and the sequence of the events much more meaningful to non-developer representatives.
It eases cooperation among developer and consumer as they share a common language.
Expected or perceived effects by the consumer is understood by the developer more easily,
enabling better implementation of development goals.

3.3 The Twelve-Factor Application

The methodology was described by Adam Wiggins [76] around 2011, then working at the
platform-as-a-service provider Heroku, detailing the aspects of software that performs well
in a cloud environment. Pooling the company’s experience in developing software-as-a-
service solutions12 and hosting others, he posited his principles to raise awareness of the
method in which applications for the web should be built. His methodology serves to
enable a web application’s13 dynamic growth that comes naturally with the evolution of
its services, conform to the dynamics of the workflow that comes with the development of
such an application, and avoid the cost of software erosion14.

3.3.1 Factors

As defined by Wiggins in summary, a web application should be developed in a way that
conforms to these points: uses declarative formats for setup automation that enables the
quick on-boarding of new contributors, has a clean contract with its underlying system
so that it is easily portable and deployable on modern cloud platforms, easily scales up
without additional effort, and enables continuous development and production workflows.
To achieve this, Wiggins provided twelve points that should be considered:

1. Centralised, versioned codebase
The code which is running as ’deploys’ in development or production environments
should share a single codebase in a version control system.

2. Explicitly declare and isolate dependencies
Dependencies in applications are supporting libraries provided from outside the
source code. These should be exactly declared in a manifest beside the application.
Dependency isolation means that the application is not influenced by dependencies
present in its surrounding system and it only has access to predefined dependencies.
Usage of tools by the application should not inherently trust the presence of the tool

12The concept, which can be described as X-as-a-Service, is that different layers of operating IT services
can be abstracted away and provided as services for customers so that their portfolio can specialise only
on a section of such operation. For example, a software-as-a-service provider handles all software related
operations tasks for its customers above everything else, while a platform-as-a-service provider offers man-
aged environments which can be used by teams without the need for employing administrators to provision
resources or manage operating systems. A Saas solution example is Dropbox or MailChimp, a Paas is AWS
Elastic Beanstalk or Heroku.

13In this and related sources the terms "web application" and "software-as-a service" are interchangeable.
14As quoted by Wiggins: "software erosion is ’slow deterioration of software over time that will eventually

lead to it becoming faulty [or] unusable’ and, importantly, [...] ’the software does not actually decay, but
rather suffers from a lack of being updated with respect to the changing environment in which it resides’"
[75].
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on the running system. This ensures uniformity across development and production
systems.

3. Store configuration in the environment
Any configuration that might vary between deploys should not be hard coded into
the application, there should be a strict separation of code and configuration. The
most easily scalable way of this is using granular environment variables for individual
deploys.

4. Treat backing services as attached resources
Backing services are services the application accesses over the network, such as
databases or API-accessible services. These should be loosely coupled with the ap-
plication and no distinction should be made between local and third-party services.
Access to these should be defined in the configuration with credentials or URLs.
The services behind these locators should be changeable without modification to the
source code.

5. Strictly separate build, release and run stages
An application goes through three stages towards deployment: the build stage con-
verts a defined point in the version history into an executable bundle, the release
stage adds the deploy’s configuration for immediate execution, and the run stage
runs processes of the service. These stages should be separated, as steps in a fur-
ther stage that correlate to responsibilities of a previous stage cannot be propagated
back.

6. Run the application as stateless processes
Services are executed as processes and any persistent data is stored in backing ser-
vices. No action taken by a service should be reliant on which process it is owned
by. The application should not trust that a system resource, such as cached data,
will be available later in the future.

7. Export services via port binding
The application should be self-contained and not reliant on runtime injection of a
web server. As such, it should export its services by binding them to a port and
listening on it for requests.

8. Scale out via the process model
Handling diverse workloads should be based on specific processes. If different types
of tasks can be defined, using task-specific processes makes it easy to concurrently
run, scale them. For example, an HTTP service and its backing long-running service
can take up their own processes. Management of the processes should be left to the
operating system.

9. Achieve disposability
By ensuring fast startup and the graceful handling of predefined or sudden errors,
the application should be able to be stopped or started instantly.

10. Ensure development/production parity
Development teams might use tools better suited to their workflow but different from
the production tools. The difference between the skill sets of the development and
operations teams could mean that the application will have trouble in its operation
and troubleshooting will take considerable effort. To solve this, the development and
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production environment15 should be kept as similar as possible down to the backing
services’ version numbers. These two teams should also closely cooperate so that
every person will have the necessary skills to handle any problem.

11. Treat logs as event streams
The application should write its logs’ event streams to the standard output and
not concern itself with persisting it. The handling and storing of these logs are the
tasks of the running system environment and these should be transparent to the
application.

12. Run management tasks as one-off processes
If there is an administrative task that must be run, such as database migration or
one-time scripts, these should be run in separate processes than the application in
an identical environment. These codes should ship with the application source code
for synchronisation.

These points can roughly be summarised in three distinct areas: the way developers
think about their software design, how the application can be operated in a way that it
most seamlessly integrates into a cloud environment, and the cultural aspect of software
development. Points number 2, 3, 4, 6, 7, 9 can intimately influence a software developer
in the way they approach their task. From how an application runs on a computing
instance, through the manner in which they expose their service, to what they expect
from and must know about the environment their software will run in, effort has to be
taken so that the developed solution will conform to the environment it will be deployed
in. Points number 8, 11, 12 give consideration to the way these applications should be
optimally run inside any cloud environment and to patterns which can be used to carry
out operations tasks such as monitoring, load balancing or administration. The other
points, numbers 1, 5, 10 define common grounds for different teams working on ensuring
the life of a single service. Having a single source of truth in the presence of a version
controlled codebase and adhering to shared practices in building and maintaining similar
environments for different purposes serves as a base for what today influences modern
software development procedure.
The twelve-factor application is not a distinct application. It concerns many questions that
are important when planning for its cloud operation. These factors are language-agnostic,
these best practices can be followed by any team in any kind of environment. As is
easily discernible, they define a wide array of topics surrounding software development and
operation, and are concurrent with how the processes of such methodologies as DevOps,
GitOps and cloud-native development have evolved. It does not serve to be a strict
framework, and considering the many ways in which software is developed, some points
might not be able to be observed as well as intended. However, the most possible adherence
to these factors can make the development and operation of a web application the most
seamless it can be.

3.3.2 Criticism and Additions

Over time some additional points and criticism were raised. Ben Horowitz detailed the
application of the twelve factors to a microservices-based architecture [62] and noted that

15The two stages where a software is tested and operated are development and production. The devel-
opment stage is specialised for the extended testing of software in development with aims for deployment,
while the production environment is the actual, operated environment where the services are deployed and
accessible by customers.
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the original factors were specific to Heroku’s own platform. As a whole frame, it is not an
exact fit for microservices, popularly utilised in application development16. For this reason
he provides amendments to the factors that conform better to the solutions provided by
him and his company. His additions only extend the twelve factors in a way that fits
better with solutions that utilise the microservices architecture, and consider more of the
modern solutions that facilitate tasks defined in these principles such as log collection or
containerisation17.
Kevin Hoffman [60] also provided insights into the application of the factors in software
development. His most important additions are the three factors he amended the original
twelve with: API first, telemetry and security in the sense of authentication and authori-
sation. Beyond this, he elaborated on the individual factors and provided best practices
to each. Also it is a clear notion that he speaks about cloud-native applications in the
context of the product that is developed following these principles. It can be deduced, that
his intention is for these principles to be considered relevant to applications that are to be
developed for environments that are cloud-native in the sense this thesis aims to describe
it. The detailed description of specific development and design practices is beyond the
scope of this thesis and there are a few that correlate with other practices that this chapter
details, therefore the summary of Chapter 3 can serve as a point of reference while in this
section, only the additional factors are elaborated.
The API first factor [60, Chapter 2] states that to truly use the advantages of an ecosystem,
where individual services consume each others products, starting the development process
by defining its API first can lead to better cooperation with other teams and a more
streamlined development. By designing the API first and adhering to it throughout the
service’s development cycle (which is, by its nature, self-repeating), further development
and integration into a larger system is easily done. The API can be used to effectively
automate the continuous processes in the development and production workflow, it can
be used by other teams to integrate their own product with the developed service, and
starting from the API design enables the most effective planning of the underlying service
to be written.
The telemetry factor [60, Chapter 14] gives further consideration to the facts given in the
original factor about log event streams. It issues that applications operated in the cloud
can slip out from the hand of its developer, as it can operate in environments where it is not
immediately and intimately accessible, for example spanning world regions in data centres.
Cloud-native applications expose three major types of metrics about themselves: data on
their general performance (HTTP traffic, system resource metrics...), domain-specific data
based on business knowledge (for example a medical diagnostic device’s effectiveness at
reading signals), and health and system logs (events such as startup, failure, scaling,
shutdown...). The first two are the responsibility of the developer, the last one depends
on the cloud operator. The amount of information that these metrics provide should be
carefully planned. Depending on the utilisation of these applications, a huge amount of
information could be dumped on the system, and managing distant applications depends
heavily on the information it provides of itself.
Lastly, the security factor [60, Chapter 15] is aimed to fill the hole in the original method-
ology left by the topic. This is not as expansive as the other amendments, it mainly states

16See JetBrains Developer Survey 2020 [64].
17Posted in 2016, Horowitz’s remarks have the chance of considering a more evolved cloud solutions

ecosystem than Wiggins, originally in 2011 and his latest revision of the factors in 2017. This writer
assumes that Wiggins had no intent on making big changes to his factors, seeing how deep an impact they
had originally and the value of keeping them in their original state.
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that in the face of general practice, security should not be a secondary consideration in the
development process. It mentions authorisation and authentication as important factors
to be implemented, if only on the most basic level. Role based access control (RBAC) with
various standards and implementations18 are cited as solutions for separating the service’s
functions based on the consumer’s identity, as knowing who did what is important. The
fact that these services will be operated across the world in data centres, in containers and
accessed by the public or fellow developers through its endpoints makes inherent security
vital.
Hoffman’s remarks show the evolution around cloud-based application development and
operation that had occurred since the original publication of the twelve factors. His
additions are aimed at factors that might not have been as prominent at the time but
emerged as ways for standardising cloud-based application development, a tendency shown
by Horowitz’s points as well, who tried applying the factors on the microservices-based
architecture. It is important to note, however, that despite modifications and additions,
the original twelve factors largely remain the same, and even if their conception was based
on the personal experiences around Heroku’s platform, Wiggins’ concept for the ideal web
application serves as a point of reference for modern, cloud-native application design.

3.4 Software Development Methodologies

Software development is the process of writing computer programs to fulfil the demands of
a section of people, private consumers or professionals, by applying a set of technological
tools and solutions to solve well-defined problems. This problem can range from small,
concise services to large enterprise solutions serving thousands of employees with a set of
defined, professional functionalities. Large development projects can produce thousands
of lines of code and a single software product might be made up of different, standalone
services. This necessitates teamwork, which in turn requires methodologies for those teams
to follow in their work.
One of the main reasons for the existence of development methodologies is that while a
simple script can be maintained by a single person, with growing numbers of lines of code
and utilised technologies, the workload on a single developer increases as well. This means
that the developer must have an increasing amount of technological knowledge and must
keep up-to-date with the state of an ever-growing codebase. This can become untenable
fairly easily. Development teams work on software products in order to pool skills and
distribute workload. Using defined methodologies also ensures that common pitfalls will
not sink the project as unforeseen problems emerge. The way in which tasks are defined,
demands are measured, and deadlines are set intimately influence the way development
work has to be managed. Something as basic as the scope of a task can influence how
many resources have to be allocated to carrying out that task, how many hours should be
spent on making sure, that the task is done in an operational and effective way.
Lots of other aspects come from these two basic points. Responsibility for the success of the
project and for the distribution of resources, procedures for realigning project goals in case
of changing circumstances, or methods for continually managing the process of different
tasks are some of those. Development methodologies have been made so that development
teams are prepared for these tasks and challenges, and are able to handle problems as they

18RBAC shortly means that users of a service are identified and collected in user groups who need
to authenticate themselves to be authorised to use the resources and functions of said service. Their
authorisation depends on their individual access control rules defined connected to their person or their
group.
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come along. However, these are influenced by the state of technology, and as the Internet
has given immediate access to online services all over the world, development procedures
have had to evolve as well.

3.4.1 Development Methodologies, Frameworks, Practices and Models

The summary of development methodologies could take up a work much larger than this
thesis. This section only aims to introduce and elaborate on a set of defined modern
development frameworks and practices, so the principles collected in this subsection are
only in comparison with what will be written in Subsections 3.4.2 to 3.4.4 and as a short
- and in no way definitive - historical summary.
Defining a way of organising development methodologies is hard in itself. Just the fact
that there are methodologies, frameworks, and sets of principles makes it hard to compare
them on the same basis. Winston Royce has written on the subject of developing large
software designs and on his insights on how a process going through the steps of measuring
requirements, analysis, design, coding, testing, and operation might prove fallible if not
handled in a flexible and iterative manner [71]. That might have falsely provided the
basis for the well-known waterfall-model [66, 50, 74]. This model, in its simplest terms,
describes the development process as different phases whose products flow into the next
phase. After this process is done, based on remarks and experiences, the whole process
is repeated until the final product is done. This model can conjure the picture of a
hobby application, rather than a long-term development project. That might be because,
according to [66, 50, 74], the model might only have been a straw-man term and intended
to be used exactly for the opposite as it has been over the years: a counter to the thought
that a rigid, procedural cycle can effectively create good software.
The waterfall model is an example of how hard it can be to pinpoint exact models and
frameworks, as they can evolve and change across development teams and cultures. It
also exemplifies standard procedures and how inflexible methods cause problems, or at
least perceived problems19, in the development of software. As the final parts of this
section, Subsections 3.4.2 to 3.4.4 will detail aspects better connected to this thesis, one
paradigm and one methodology will be shortly introduced here as a primer, as, in this
writer’s opinion, they have a strong connection to those aspects and influence the developer
community greatly.

Agile Development and Extreme Programming

The philosophy around Agile has been first codified in the Agile Manifesto [46]. The four
core values are: "Individuals and interactions over processes and tools; working software
over comprehensive documentation; customer collaboration over contract negotiation; re-
sponding to change over following a plan". The manifesto also states an order of im-
portance, "while there is value in the items on the right, we value the items on the left
more". The authors of the manifesto intended to provide a new philosophy for approach-
ing software development. Looking at the four core values, the agile philosophy states, in
summary, that development work should be defined by the people carrying out the work
and using the product instead of the processes and methodologies that these people use
while doing their work. This is intentionally vague, as the signatories were of several,
differing opinions. The main intent of the manifesto was to provide a frame of thought

19Cited sources allude to some of these problems being exaggerated on purpose to be put in opposition
of other development approaches.
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that would free development work from the strict processes that it has been confined in
by traditional structures [1].
The Agile Alliance is an organisation that has grown from the manifesto and advocates
practices and values associated with agile methodologies. They have elaborated on the
original manifesto and defined twelve points that describe the agile philosophy, verbatim
[3]:

1. Our highest priority is to satisfy the customer through early and continuous delivery
of valuable software.

2. Welcome changing requirements, even late in development. Agile processes harness
change for the customer’s competitive advantage.

3. Deliver working software frequently, from a couple of weeks to a couple of months,
with a preference to the shorter timescale.

4. Business people and developers must work together daily throughout the project.

5. Build projects around motivated individuals. Give them the environment and sup-
port they need, and trust them to get the job done.

6. The most efficient and effective method of conveying information to and within a
development team is face-to-face conversation.

7. Working software is the primary measure of progress.

8. Agile processes promote sustainable development. The sponsors, developers, and
users should be able to maintain a constant pace indefinitely.

9. Continuous attention to technical excellence and good design enhances agility.

10. Simplicity – the art of maximising the amount of work not done – is essential.

11. The best architectures, requirements, and designs emerge from self-organising teams.

12. At regular intervals, the team reflects on how to become more effective, then tunes
and adjusts its behaviour accordingly.

It is clear that these points are based innately on the four core principles; however, they
allow better interpretation for the actual practices and methodologies that want to conform
to these tenets. One of the main messages here is that customers and developers are people,
and their needs have to be considered first and foremost. The requirements, processes and
measures that lead their work should be defined by themselves, according to how they see
fit to work on their individual products. This needs flexibility and the desire to change.
This desire should not be self-serving though. Changes should be driven by the changing
environment the product is developed for. To actually see this change, developers and
customers need to interact closely, promoting cooperation. Finally, teams should be self-
organising and should have the possibility of retrospection, to change the way they conduct
their work based on their experiences. The constantly stated continuity requirement - as
in continuous delivery of software and the frequency of that delivery - and openness to
changing specifications also echo the basis for the practices further detailed in Subsections
3.4.2 to 3.4.4.
Martin Fowler has written in depth about what he thinks the agile methodologies bring
to software development [53]. He concentrates on these methodologies’ adaptability and
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people-orientation, in parallel with the manifesto’s message. These insights are valuable
elaborations on the previously mentioned aspects; however, his listing of agile methodolo-
gies and thoughts on who should adopt these are just as much informative. Among the
listed methodologies he mentions Extreme Programming (XP), the tenets of which were
defined by Kent Beck in Extreme Programming Explained [44]. As of Fowler, XP aims to
bridge certain practices and abstract values with principles that help synergise the whole
methodology into a frame that can be used to drive software development. By Michele
Marchesi [65], XP has seen a big revision over the years, the number of its values, practices
and principles has increased20. Methodologies associated with the agile philosophy evolve
dynamically, and rightly so, as the philosophy itself encourages change. The increase of
practices shows the inclusion of experiences of those, who utilise XP. Three of those prac-
tices with close connection to topics in latter parts of this section are the primary practice
of continuous integration [65, Page 5-6], and the corollary practices of a single code base
and daily deployment [65, Page 6]. The evolution of XP is a good example of the changes
the agile movement advocates. However, as of Fowler [53], adopting agile practices is not
a solution to everything. The difficulty in their adoption is actually the human nature of
the changes that have to be made in a development team’s day-to-day work, and as such,
it should not be attempted in communities where the members themselves do not want to
adopt them.
XP is just an example of the evolution of development methodologies, and just an ex-
ample from all the aspects of philosophies that the development community uses in their
everyday work. However, methodologies such as XP, and in essence the agile philosophy,
advocated for changes that have defined a new way of delivering software solutions to cus-
tomers. Some of those have influenced this thesis and they will be detailed in the following
subsections.

3.4.2 Continuous Practices

Continuous practices is used in [72] to refer to a set of practices that can be mentioned
as part of "continuous software engineering". Those three practices are Continuous Inte-
gration, Continuous Delivery and Continuous Deployment. According to [72, Chapter II],
these practices are aimed at the accelerated development and stable, frequent delivery of
software products without compromising quality using automation in all the places where
manual tasks can be substituted with tools, while bringing development and operations
teams closer in cooperation for the seamless functioning of their provided software ser-
vices. The mentioned practices enable these teams to work together as they make links
between the workflows of each other. Additionally, frequent exchanges of feedback between
developer and customer must ensure that experiences and errors are integrated into the
development work so that the software will always be reactive to its users’ demands.
Continuous Integration (CI) - while being a primary practice for XP - is a main topic for
Humble and Farley [63, Chapter 3]. Perhaps the most important idea they describe is
that while using continuous integration, the developed software is always proven to work,
it is at a working stage all the time. Without it, the proof of it working comes from
occasionally performed testing or integration. However, by committing every change the
development team makes to the codebase - which inherently implies the use of version
control systems - the automated build, unit and integration tests will be performed on

20As of Marchesi [65, Page 1], Beck defined four values, fifteen basic principles, and twelve practices in the
first edition of his book [44, Through Marchesi, 2005]. In the second edition [45, Through Marchesi, 2005],
there are five values, fourteen principles, thirteen primary practices and eleven corollary practices (24
practices in all).
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Figure 3.7: Illustration of an example workflow implementing
Continuous Delivery.

each build and any errors that the changes might introduce to the codebase is apparent.
At this stage, Humble and Farley state that the fixing of this problem actually preempts
any other task the team might have. By always being up to date on the working state of
the software, it is also cheaper for the team to fix these bugs. For them, CI is possibly on
the same level of importance as using version control in development projects. Common
aspects of CI include [63, Chapter 3] [72, Chapter II] [55]: use of a single, versioned source
code repository; multiple check ins from development work to the source code mainline21

daily; assurance, that at any time, the mainline software is in a working state; automated
build and testing; fast build and test times so that frequent check ins do not block the
workflow; common access to the whole codebase for every team member; and frequent
communication on and well-defined responsibilities for the state of the software between
team members. This all enables rapid development of software while ensuring the best
quality and seamless cooperation at all times.
The following two practices cannot be separated as well as they can be from CI, so they
will be detailed together. They are Continuous Delivery (CDel) and Continuous Deploy-
ment (CDep)22. While CI aims to streamline the development process and ensure that
the software is always at a working state, CDel ensures that this software is always at a
production-ready state by using CI and automation to carry out builds and testing, as
shown in Figure 3.7, reducing risks connected to software deployment, lowering cost and
accelerating feedback between developer and customer. CDep connects with this process
and, using automation, steadily deploys a production-ready software to a production en-
vironment, like the one in Figure 3.8. With CDel, deployment is a manual decision, CDep
carries that out automatically [72, Chapter II].
CDel is inherently an important business decision as well as a technical one. When software
is deployed, it starts being an active business asset. This means that its deployment cycle
and that cycle’s success also affects business considerations. CDel ensures that each step
in the deployment is traceable, different business actors can build their own version of
the deployable software and see how it behaves, and different CDel tools allow role-based
access to their processes. Automation also minimises human error in the deployment and
enables thorough testing. For this reason, Humble and Farley [63, Chapter 15] wrote

21Multiple phrases could be used to describe the version controlled workflow. To avoid confusion, the
basic workflow is that there is a main point which is always the most current state of the software, and
all changes made to it are written on another version, which is "branched" from the main version. Then,
after all the required changes have been made and possibly checks are applied, such as testing, it is merged
into the main version. This causes another, more current version to be at the main point and further
development is conducted from that point onward. A specific set of principles is called gitflow [51].

22In other descriptions, these two are all abbreviated as CD; however, for the sake of clarity, more
descriptive abbreviations are used here.
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Figure 3.8: Illustration of an example workflow implementing
Continuous Deployment.

in depth about CDel management, and the fact that they heavily pronounce business
considerations next to technical ones shows how much these two fields connect considering
software delivery. In summary, using CDel practices ensures that "the current development
version of the software can be deployed into production at a moment’s notice - and nobody
would bat an eyelid, let alone panic" [56].
CDep builds on CDel practices and they must be present for CDep to be possible [56].
Research also suggests, that CDep might not be suitable for all business considerations
[72, Chapter II]. Nevertheless, if practices are in place, CDep allows incremental changes
to the software to be continually applied to software in production by automatically going
through deployment pipelines where different processes are run to ensure that the software
actually conforms to requirements, such as builds, tests, or package publishing. A basic
overview is illustrated in Figure 3.9 [72, Figure 1] [73, 68].
To support adoption of CI/CDel/CDep, a huge number of tools have been designed to
help in different stages of the deployment pipeline23. A large permutation of these can be
used to make an integration and delivery system that enables the acceleration of software
development and the increasing cooperation between teams responsible for said software.
The evolution of these practices was precipitated by the agile philosophy, as their tenets
for the continuous development of quality assured software needed defined methods and
tools that could be integrated into actual development work. Today, these practices have
an important place in the developer community. In a survey, 44% of developers who use
Docker images said they used a CI/CDel/CDep framework [64] to deploy those images,
61% of those respondents who use cloud hosting services said they use CI/CDel/CDep
frameworks for deployment, and 45% of all respondents said they used CI or CDel/CDep
tools regularly24. With cloud computing’s pace of evolution, these practices and tools
are even more important, as opportunities for cloud-native operation rise. If software
development is faster and easier when companies do not have to own all the resources
needed, and computing resources are available on-demand, practices that enable this way
of development will be popular, and this shows great promise for continuous practices.

23For a list of these, see [72, Figure 4] and a collection of tools at [9] as part of the larger DevOps
ecosystem.

24Important side note: the survey uses abbreviations in places, while full phrases in others. As such,
this thesis makes the assumption that CDel and CDep tools constitute "CD" as it is used by the surveyors.
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Figure 3.9: A basic CI/CDel/CDep workflow illustrated.

3.4.3 DevOps

While detailing the short history of development methodologies, it has been stated, that
it is difficult to pinpoint them, as a lot of those change across different cultures and teams.
The evolution of these methodologies shows a wide curve. From methods of the middle of
the 20th century, such as Royce’s iterative model, to the extremely adaptive and granular
practices of today, which were greatly influenced by the signatories of the Agile Manifesto,
there has been a steady growth of software development culture. As development work
reaches the level of maturity where philosophies emerge about how it should be done
best, some principles begin living their own life, abstracted from the actual practices that
developers use day-to-day. DevOps is such a framework.
The Gartner Glossary defines DevOps as "a change in IT culture, focusing on rapid IT
service delivery through the adoption of agile, lean practices in the context of a system-
oriented approach", which seeks to improve cooperation among teams responsible for the
service’s lifecycle, utilising automation technology [12]. Some of the biggest IT industry
leaders echo these as well [2, 20, 30]. Culture is an important term, as it implies that Dev-
Ops aims to be more than a collection of tools and practices. An interesting compilation
has been published by the DevOps Research and Assessment team of the capabilities that
they consider in relation to a well-working DevOps culture, defined in Table 3.1 [49]. This
thesis considers this the best defined set of principles and, as such, considers it to be what
DevOps stands for25.

25With the caveat: DevOps is not definitive. There are many descriptions and frameworks advertised
as DevOps. It cannot go unstated that this decision is necessarily subjective, as is the essence of DevOps
itself.
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Technical Process Measurement Cultural
Version control Team experimentation Monitoring and observ-

ability
Job satisfaction

Continuous integration Streamlining change
approval

Monitoring systems to
inform business deci-
sions

Westrum organisa-
tional culture

Deployment automa-
tion

Customer feedback Proactive failure notifi-
cation

Transformational lead-
ership

Trunk-based develop-
ment

Visibility of work in the
value stream

Work in process limits Learning culture

Continuous testing Working in small
batches

Visual management ca-
pabilities

Continuous delivery
Architecture
Cloud infrastructure
Test data management
Empowering teams to
choose tools
Shifting left on security
Database change man-
agement
Code maintainability

Table 3.1: DevOps capabilities defined by DORA

Without the need for definitive description of each capability26, it is clear that most of
these - by their name - are closely related to aspects previously defined in this chapter
from Section 3.1 to Subsection 3.4.2. Most of the technical capabilities enunciate practices
that conform to the continuous practices (continuous processes, automation, testing and
code maintainability) detailed in Subsection 3.4.2 and also have aspects in common with
the goals of the microservices architecture (free experimentation with tools on team level),
elaborated on in Section 3.1. The process capabilities share the same message as the values
stated in relation to the agile philosophy detailed in Subsection 3.4.1. The practices listed
under measurements bring the continuous observation of the software into consideration,
also an important part of continuous practices; however, it also includes aspects about the
amount of work done at once by the team in question and the ability of self-measurement
(think visual management tools, like storyboards where specifications are detailed in a
visual and everyday manner). Steady organisation of workload is also a part of DevOps
culture. Finally, the capabilities under culture bring the DevOps circle to a close and give
the framework its own essence.
While, as detailed, most of the previous capabilities have a lot in common with other, par-
allel methodologies and practices, DevOps brings them all together under a far-reaching,
cultural shift. Leadership and cooperation constitute the basic tenets of DevOps, its main
objective is to bring together teams that previously worked in silos, meaning disconnected
from each other in terms of technology, management and communication. The amount
of disparate processes it means to connect is shown in Figure 3.10 [8], a commonly used
illustration of the DevOps workflow. The name DevOps is a sign of that as well, Dev
stands for development and Ops stands for operations. This shift must start with the
people in these teams, nevertheless; they have to be the ones driving these changes and

26Detailed description of each can be found following the citation.
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Figure 3.10: The DevOps infinite workflow cycle.

applying the methods and practices that DevOps entails. As such, the success of DevOps
lies more with those implementing it rather than the technical environment.
The evolution of DevOps and its adoption has brought about a scene of other "Ops"-es,
their goal being to bring the cultural aspects of DevOps to other technical areas. Security
has become increasingly important as software is delivered more and more rapidly, and
this brought on DevSecOps, which aims to intersect security with the processes of DevOps
[31]. Another example of this is FinOps, which brings financial accountability to the fiscal
management of cloud services [10]. A common theme is to bring these specialised teams
out of their silos and promote close connection and cooperation with other teams. It can
be deduced that DevOps has not only brought on a cultural shift in development and
operations teams but has given rise to a framework which is technology and speciality
agnostic. Its tenets are being applied to different areas that have connection to IT oper-
ations. It is hard to properly adhere to the DevOps mentality; however, it characterises
modern software development culture and plays a big part in the philosophy of the IT
community.

3.4.4 GitOps

In the end of Subsection 3.4.3, it has been stated, that DevOps has given rise to a number of
other frameworks that seek to utilise the cultural and technological practices of DevOps in
specific areas. GitOps is one such framework. It will be detailed further in this subsection,
as it connects in many places with the topics of this thesis, such as the operation of a cloud-
based application, the supporting cloud infrastructure, and cloud-native best practices.
GitOps was described by Alexis Richardson in 2017 at Weaveworks [33, 16] and it has
seen steady growth since its inception. In summary, GitOps is "[an] operating model for
Kubernetes and other cloud-native technologies, providing a set of best practices that unify
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Figure 3.11: Illustration of how Git connects the development and
operations workflows together.

deployment, management and monitoring for containerised clusters and applications. A
path towards a developer experience for managing applications; where end-to-end CI/CD
pipelines and Git workflows are applied to both operations, and development" [33]. This
flow is illustrated in Figure 3.11 [13], as well as the immutability border, which denotes
the two domains whose changes must not directly influence the work performed by the
other, only through changes in Git.
What is immediately evident is that GitOps was made with the version control system Git
and the container orchestration tool Kubernetes in mind; however, by their own admis-
sion, its principles are able to be used with any other tools that serve a similar purpose.
Kubernetes is used as it allows for the declarative description of the desire state of cloud
resources, as detailed in Chapter 2, which is one of the basic principles. GitOps aims
to give developers tools that enable them to define their production environments and
operate them inside the same workflow that they use for development work. This does not
mean that operators are excluded from this work, but rather means that they are part of
the same workflow and can use the same set of tools for its automation. "The core idea
of GitOps is having a Git repository that always contains declarative descriptions of the
infrastructure currently desired in the production environment and an automated process
to make the production environment match the described state in the repository. If you
want to deploy a new application or update an existing one, you only need to update
the repository - the automated process handles everything else" [16]. By keeping the dec-
laration of the desired environment state inside a version controlled repository, multiple
benefits are gained:

• there is a clear audit log of changes applied to the environment and their reasoning
through easily understandable commit messages;

• as changes are introduced as commits that iterate over a moment in the repository’s
state, those changes can be easily and quickly reverted as well in case of failure or
other problems, since the system keeps the description of the previous states in its
history;
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• all this is centralised, there can always be a single source of truth about the complete
description of the desired state, allowing information to be freely accessible by teams
working on their products.

In order to integrate GitOps practices in a development workflow, four principles must be
followed [33]:

• The entire environment must be described declaratively.
This ensures that the actual state is always the same as the desired state, as it does
not specify open-ended instructions but rather facts that must be true about the
environment. Of course, it cannot be said that the actual state is always the same;
however, the declarative description allows for differences to be noticed and acted
upon.

• The canonical state of the environment must be stored in a version controlled repos-
itory.
This is a separate repository to all other in the development workflow. Using the
capabilities of systems such as Git, the main source of truth is a repository that can
only be modified through a well-defined and secure process, and its history enables
reasoning of changes in the environment and reverting those changes if need be.

• The changes made in the environment repository must be automatically applied to
the environment.
By automating these processes, developers can be sure, that committing changes to
the repository will mean, that the underlying system represents the state declared in
the repository. This serves to connect the development and operation of the software.

• Monitoring solutions must be used to ensure correctness and alert on divergence.
Information must be available on the correct operation of the environment. This
can range from the health of different components to the correct implementation
of specification. If Kubernetes is taken as example, individual Pods might be self-
healing; however, these aspects should still be monitored for complete coverage.
What must be monitored though is the correct configuration of the environment to
rule out human error and misconfiguration.

Using GitOps principles in the development workflow allows for developers to have a larger
role in the operation of their software. By using version control systems, Git as commonly
referenced by [33, 16], familiar processes can be applied to infrastructure configuration.
This operation enables two methods of applying changes in the repository to the envi-
ronment, the push-based and the pull-based approach. This describes the way in which
changes are deployed to the environment. In the push-based approach, changes committed
to the repository are then "pushed" to the environment in a pipeline that automates the
process of applying the changes. This means two things: there has to be a separate process
for the actual application of the desired changes, and there is no inherent method for the
environment to notice or propagate changes back to the repository if the environment’s
state diverges from that described in the repository. There is a bit of a disconnect be-
tween the repository and the environment, which is bridged by the pipeline that handles
the state of the environment. Figure 3.12 shows an illustration of this approach [15].
The pull-based method inverts how the changes in the declarations are deployed to the
environment. In this model, an operator software acts as the overseer of the environment
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Figure 3.12: Example of the push-based deployment approach

Figure 3.13: Example of the pull-based deployment approach

and it makes sure that the environment resembles the desired state stored in the repository.
This operator, firstly, monitors the repository and deploys changes. Secondly, it ensures
that deviation caused by outside sources are rolled back, so that the environment does
not divert from the state in the repository. This method necessitates the presence of such
an operator software; however, this is the most secure way of automating the process,
as no undue authorisation has to be given to third-parties, the operator is part of the
infrastructure and changes are carried out by the environment itself. Kubernetes’ example
would be the application of changed manifest files through kubectl, after which Kubernetes
ensures the desired operation of its cluster. Figure 3.13 illustrates this approach [14]
Whichever method is used, the automated deployment of environments enables develop-
ment teams to rapidly develop and deploy software in multiple stages of the software’s
lifecycle. The fact that everything is "logged" in a sense in the version control system en-
ables rollbacks between versions of the environment and the observation of reasons behind
changes at a given point. Development team members do not have to directly interact
with the environment, so no access has to be given, security can be better implemented,
especially if the environment operator can act on its own as part of the infrastructure.
Finally, these practices allow better communication between teams involved with devel-
oping software solutions, as all steps are reproducible through the version control system,
everybody has access to a single source of the current stage of development and the dis-
parate processes of development and operations teams are easily connected with each other
through common tools.
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3.5 Cloud-Native Software Development

In Chapter 3, different aspects of software development have been elaborated on. With
the findings in these sections, Section 3.5 aims to define cloud-native development, as it
relates to the development work conducted in this thesis. By defining what part these
findings play in cloud-native development, a framework will be in place for later parts to
reference, when the actual design and development work is detailed.
Cloud-native technologies, as defined by the Cloud Native Computing Foundation (CNCF)
"empower organisations to build and run scalable applications in modern, dynamic envi-
ronments such as public, private, and hybrid clouds. Containers, service meshes, microser-
vices, immutable infrastructure, and declarative APIs exemplify this approach. These
techniques enable loosely coupled systems that are resilient, manageable, and observable.
Combined with robust automation, they allow engineers to make high-impact changes
frequently and predictably with minimal toil" [6]. Decomposing this definition allows for
the inclusion of previous topics.
Cloud-native technologies run scalable application in dynamic cloud environments with
declarative APIs. Chapter 2 details Kubernetes, an orchestration tool for the dynamic
provision of container-based applications. If an application aims to be cloud-native, its
developers must make sure that it can easily be operated by tools that abstract away
the processes of cloud resource allocation and conform to the standardised processes that
these tools support. An example would be how an application is containerised and made
available for Kubernetes to access. In this thesis, this method is the usage of public
container repositories and the definition of their access in the Kubernetes configuration.
Applications are developed in a cloud-native manner by using microservices and container-
isation technology to make loosely coupled systems. For the scaling of the application to
be the most efficient, small, independent microservices are best used, as these can be
scaled horizontally the easiest. Horizontal scaling means that increasing load is handled
by initiating more instances of a certain service. This is more cost-efficient compared
to vertical scaling, which means that more resources are allocated to an already running
instance. Section 3.1 details the architectural aspects of microservices development, while
Section 3.3 elaborates on the manner in which web services should be developed. While
the former is an architectural pattern which defines a higher level in the design process,
the latter contains guidelines on how an application should be designed on a deeper,
development-specific level. Section 3.2 details an architectural pattern that has evolved
in connection with the challenges of keeping data available and consistent in distributed
systems necessitated by such an approach.
Cloud-native technologies enable systems to be resilient, manageable, and observable.
Resilience is the attribute that defines how well a cloud-based system performs under
dynamically changing load. Specific processes in Kubernetes and the disposable nature
of a web application, as defined by Section 3.3, enable the easy build up and tear down
of system resources depending on usage. The manageability of these systems is ensured
by the abstractions provided by Kubernetes and by following practices that streamline
infrastructure management, such as those defined in Subsections 3.4.2 to 3.4.4. The ob-
servability of such systems is achieved by careful consideration of logs and metrics in the
design and development process, as defined in Section 3.3, and the practical application of
observability solutions, such as those defined in later parts about this thesis’ development
work.
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These aspects, combined with robust automation, allow high-impact, quick, and pre-
dictable changes to be made to systems running in a cloud-native environment with
minimal toil. As software development accelerates, human error has to be ruled out
by putting repetitive processes through testable, automated pipelines. The deployment of
cloud-native infrastructures is such a process, and its automation allows for engineers to
constantly change details in the environment without much impact on how those changes
are deployed in a working cloud infrastructure. This needs a consistent effort on a tech-
nological and human level as well. The way in which this changed the tools and culture
around software development is detailed in the subsections of Section 3.4. Additional at-
tention is given to automation in Subsections 3.4.2 to 3.4.4. Subsection 3.4.4 elaborates
in more detail on how infrastructure management changed due to these developments.
Cloud-native development seeks to utilise the growth in cloud computing technology. The
details in this summary section give a shallow overview on how cloud-native development
can be perceived from the viewpoint of this thesis. However, its growing landscape is huge,
and much more could be written about it. Nevertheless, Chapters 2 to 3 of this thesis
give an overview which will be used to describe the practices that have been used in this
thesis for the development of a cloud-native application.
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Chapter 4

Practical Aspects of Cloud-Native
Software Development

In Chapter 3, the fundamentals of cloud-native software development have been de-
tailed, while in Chapter 2, Kubernetes has been introduced as a solution for orchestrating
container-based applications in a cloud environment. In Chapter 4, this thesis’ practi-
cal work will be introduced, which aims to demonstrate the use of the aforementioned
practices and methodologies in an actual, working system.
Firstly, the microservices-based software will be documented, which is to be used in per-
forming testing of the cloud environment it will be deployed in. After that, the automated
continuous development environment will be drawn up concerning the CI/CDep solutions
and versioning system that will be used. Thirdly, the cloud environment’s basic structure
will be detailed, as regards the workflow that this thesis employs. This means that some
aspects of this environment will be treated as outsourced, not pertaining to the scope of
this writing. Considering this, the documentation of the Kubernetes cluster will be pro-
vided, and its services that are used by the deployed application. Following that, a short
documentation will be written about the monitoring, logging and alerting solutions that
are used to operate the deployed software. Finally, a use case test and its findings will be
presented which serve to show the operation of the employed technologies in practice. In
all these sections, where applicable, parallels will be drawn between the implementation
of the technological solutions and the practices introduced in Chapters 2 to 3.

4.1 Cloud-Native Software Solution

The software that has been developed as part of this thesis’ work is a simple inventory
and shopping basket application. As it is primarily used for testing purposes, its design is
more focused on functionality than being well-rounded. As such, it only performs to the
specific needs that the used methodologies and the surrounding cloud environment has.
Its architectural composition was planned so that the cloud-native development workflow,
and cloud-native operation are easily implemented.

4.1.1 Software Design

The basic setup contains two microservices. One is an inventory service, whose task is
to persist items that the store needs to keep track off. This includes the creation of
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1 ”””The @ decorator provides the HTTP and path settings
2 for the function.
3 ”””
4 @app.route("/", methods=["GET"])
5 def inventory_process(error=None):
6 ”””The HTTP requests counter’s specific label
7 gets incremented by each call.
8 ”””
9 http_counter_metric.labels(method="GET", endpoint="/").inc()

10 ”””The server aggregates the items in memory and prints
11 responds with the main page HTML, with variables set.
12 Error messages are provided when needed.
13 ”””
14 inventory = {
15 item.name: item.amount for item in \
16 inventory_web_interface.inventory.values()
17 }
18 return render_template("inventory_page.html",
19 inventory=inventory,
20 error=error)

Listing 3: The function defining the actions that must be taken by the application when
accessing the "/" path exposed by the Flask server.

these items, their stock-keeping, and their deletion from the store. The other service is
an order service, which provides the functionalities of a shopping basket. This service is
bare bones, other than creating basket instances, represented as event streams in the data
store, and adding arbitrarily provided items, it does not provide other functions. These
microservices use an event store, the EventStoreDB, as a persistent database. This is
where the functions of each service write the actions they perform by sending the logical
results of these operations as events.
Each microservice can be described by using aspects of the three layered, domain-, and
event-driven architectures. A service contains a primitive user interface, a layer that
implements business logic, and a layer that translates logical operations - or commands,
as it is used in this design - into events, which are transmitted to the event store. The
UI serves as a point of interaction between the software and the user. The business logic
layer performs the following functions: contains the logical representation of the objects
whose state are described by the sequence of events that are emitted from the service;
executes logical checks on user commands, so that they conform to the logic that governs
the domain the service implements; and translates commands into domain terms that can
be used to construct events. The event layer uses information provided by the business
logic layer to generate events, and makes sure that these events are written to the event
store, to the appropriate stream, in the appropriate manner.
Both services have a web server framework, Flask [11], integrated. This enables the
exposition of the service’s functions through paths defined in a separate Python module
by reserving a port for network communication. It allows performing actions defined
in Python functions that correlate to paths that can be reached on the internet, with
different settings available, such as the allowed HTTP methods. The "/" path of the
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1 ”””This function handles the execution of an Event object.”””
2 def execute(self):
3 ”””The event counter is incremented on each execution.”””
4 Event.event_counter_metric.inc()
5 ”””The event receives a unique ID, and is written
6 to the event store stream, identified by the
7 aggregate ID set during the creation of the event.
8 ”””
9 es_id = uuid.uuid4()

10 headers = {
11 "Content-Type": "application/json",
12 "ES-EventType": self.event_type.value,
13 "ES-EventID": str(es_id),
14 }
15 requests.post(
16 f"{os.getenv('EVENTSTORE_STREAM_URL')}/{self.aggregate_id}",
17 data=json.dumps(self.data),
18 headers=headers,
19 )

Listing 4: Excerpt from the codebase that handles the sending of events through the
HTTP API by using the requests package.

inventory service can be seen in Listing 3. For communicating with the EventStoreDB
through its HTTP API, the requests package [32] is used, as shown in Listing 4.
As mentioned, the service keeps the state stored in the event store in logical Aggregate
objects, which summarise the sequence of events into the momentary, actual state. This
object is the point of contact between the event-based system and the user intent1, as this
is where a command submitted to the logical object is translated into an event emitted
to the specified event stream, which is defined by the specific identity of the object. For
example, in the inventory service, a command expressible as "increase X stock by 20"
is submitted to the X Aggregate object, and it will egress an event that states "Stock
increased by 20" to the X stream of the event store.
This Aggregate has been designed with additional event sourcing capabilities in mind,
those that are not necessary for testing purposes, such as the capability to:

• keep the version of the Aggregate object; this enables the application to ensure data
consistency by comparing the versions of the logical and the stored state

• reverse translate the events that it might receive; which enables the logical effects of
a parsed state to be applied to the logical Aggregate

• iterate over an event stream’s events and apply their effects in sequence; providing
the ability to recreate a sequence of events in a fresh Aggregate object.

The implementation of these shared and specific capabilities are shown in Listings 5 and
6.

1As noted in Section 3.2.1, intent in this context is simply a turn of phrase.
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1 class Aggregate:
2 def __init__(self):
3 ”””The ID of the Aggregate correlates
4 with the event stream it represents.
5 ”””
6 self.aggregate_id = uuid.uuid4()
7 ”””The version number - used to identify individual events in a stream -
8 enables consistency checks.
9 ”””

10 self.version = 0
11

12 def apply_event_effects_to_aggregate(self, event_json):
13 ”””Event sourcing function not implemented.”””
14 pass
15

16 def raise_event(self, event):
17 ”””Execution function for easier reading while handling Aggregates.”””
18 event.execute()
19

20 def load_up(self):
21 ”””Function enabling the processing of an entire event stream.
22 The ID of the stream is defined by self.aggregate˙id.
23 ”””
24 version = self.version
25 ”””Events can be read in order in the stream from the version point.”””
26 while True:
27 request = requests.get(
28 (f"{os.getenv('EVENTSTORE_STREAM_URL')}" +
29 f"/{self.aggregate_id}/{version}"),
30 headers={"Accept": "application/vnd.eventstore.atom+json"},
31 )
32 ”””In sequential reading of a stream, when there are no more events,
33 a non-200 message is received, signaling the end of the stream.
34 ”””
35 if request.status_code == 200:
36 self.apply_event_effects_to_aggregate(request.json())
37 version += 1
38 else:
39 break
40 self.version = version

Listing 5: The base Aggregate class.
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1 class ProductStockAggregate(Aggregate):
2 def __init__(self, name, amount):
3 super().__init__()
4 self.name = name
5 self.amount = amount
6 ”””Status is a one-step indicator of an event stream’s current status.”””
7 self.status = PRODUCT_STOCK_STATUS.INACTIVE
8

9 ”””Function enables parsing of domain-specific events in event streams.”””
10 def apply_event_effects_to_aggregate(self, event_json):
11 event_type = event_json["summary"]
12 data_dict = event_json["content"]["data"]
13

14 if event_type is INVENTORY_EVENT_TYPE.StockCreated.value:
15 self.status = PRODUCT_STOCK_STATUS.CREATED
16 elif event_type is INVENTORY_EVENT_TYPE.StockAdded.value:
17 self.amount += data_dict["amount"]
18 elif event_type is INVENTORY_EVENT_TYPE.StockSubtracted.value:
19 self.amount -= data_dict["amount"]
20 elif event_type is INVENTORY_EVENT_TYPE.StockDeleted.value:
21 self.status = PRODUCT_STOCK_STATUS.DELETED
22

23 ”””Function handles specific event sending and keeps status up-to-date.”””
24 def create_stock(self, reason):
25 payload = {"reason": reason}
26 self.raise_event(
27 domain_events.StockEvent(
28 INVENTORY_EVENT_TYPE.StockCreated, self.aggregate_id, payload
29 )
30 )
31 self.version += 1
32 self.status = PRODUCT_STOCK_STATUS.CREATED

Listing 6: Excerpt from product_stock_aggregate in the inventory microservice.
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Figure 4.1: A sample event stream in EventStoreDB of item X
with 20 stock.
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To support this methodology, the events emitted by the services have been designed in
such a way, that they allow for sequential reading and application to a logical summary.
Events have a type, it describes what the event means for the stream it is appended
to. There is a genesis event for all event streams2. After the stream is created, any
event appended to it details a single occurrence, the effect that it has on the logical
whole. If product X has been created and 20 stock has been added to it, the sequence
of events in stream X can be seen in Figure 4.1. As visible, it contains statements as
event types in the past tense, detailing a single occurrence. The payload of the event
contains details that describe how that specific event has passed. The genesis event is the
"ProductCreatedEvent" that includes the product details, the secondary genesis event is
the "StockCreatedEvent" with the reason for the creation of the stock. After appending
20 stock, the event "StockAddedEvent" describes this with the details of the occurrence,
the amount of the addition. Individually applied, these provide no information on state;
however, stringed together in a sequence, they gain meaning.
In order for logging and monitoring to be implemented, Python’s logging module and
the Prometheus instrumentation client library [22] was used in the microservices. The
services emit logs to the standard output, which is the method the log collection solution,
Promtail [28], scrapes these entries with. These are then aggregated by Loki [18]. The
metrics that measure quantifiable data are exposed at a specific path - "/metrics" - in
order for Prometheus [25], the metric collection solution, to collect them. These solutions
are further explained in their own sections, the instrumentation of these functions will be
detailed here.

4.1.2 Logging

Logging is implemented at certain parts in the code, where meaningful messages help
understand the functioning of the application. Python’s logging module allows for in-
dividual logger instances in each of its modules; however, in this application, the root
logger instance is sufficient. It is initiated in the package initialisation file of each service
that runs the first time a Python package is executed. Where applicable, log messages
of different priority are created and sent to the standard output. Two priority levels are
used: INFO and ERROR. The sole informational log message is when the application is
being started and when it has finished starting up - because of Python’s unique import
structure, this happens when the __init__.py file is run at package execution and when
all the files are completely initialised through imports at the end of views.py3, exemplified
in Figure 4.2. Error messages are logged when exceptions are encountered, and there are
two main categories in use: exceptions relating to the use of the requests package for
network connections to the event store, which is shown in Listing 7, and when exceptions
are encountered through the functioning of the application itself. These message are for-

2In fact, for the inventory, there are two genesis events, as the product and the stock are created
separately but handled in the same stream.

3In Python, a single .py file, called a module, can import other modules to access its features. When
this happens, all the initialisation tasks described in the imported module are run before moving on to
further parts of the original code. This means that, if modules are imported hierarchically down the line
of modules, all modules that take part in the functioning of an application will be initialised when the
script that first imports the starting modules are finished. Thus, if the package execution starts with
__init__.py and the log message "app is being initialised" is emitted, it imports views.py, which in turn
imports all the modules that are part of the application and all the imports eventually return to views.py,
and the code reaches the end of views.py where it logs the "app has been configured successfully" message,
it means that there were no errors encountered while interpreting all the modules that the application
needs to run.
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1 from . import prom_logs
2

3 ”””Enumeration of variables related to errors expected to occur”””
4 expected_main_error_types = [
5 requests.exceptions.ConnectTimeout,
6 ”””And on...”””
7 ]
8 error_logging_messages = {
9 "ConnectTimeout": f"network timeout error" +

10 f"while connecting to {os.getenv('EVENTSTORE_STREAM_URL')}",
11 ”””And on...”””
12 }
13 error_logging_error_codes = {
14 "ConnectTimeout": 502,
15 ”””And on...”””
16 }
17 error_logging_metrics = {
18 "ConnectTimeout":
19 prom_logs.performance_metrics["network_timeout_error_counter"],
20 ”””And on...”””
21 }
22 def log_and_return_connection_error_response(e):
23 ”””Called when exception class RequestException is caught.
24 The specific error is identified and the error log message is generated with a template.
25 The specific metric is incremented.
26 An HTTP error is returned.
27 ”””
28 error_type = type(e)
29 for expected_error_type in expected_main_error_types:
30 if error_type is expected_error_type:
31 error_logging_metrics[expected_error_type.__name__].inc()
32 logging.error(
33 f"{error_logging_messages[expected_error_type.__name__]}" +
34 f"type {error_type.__name__}"
35 )
36 return Response(
37 status=error_logging_error_codes[expected_error_type.__name__]
38 )
39 error_logging_metrics["unknown error"].inc()
40 logging.error(
41 f"{error_logging_messages['unknown error']}" +
42 f"type {error_type.__name__}"
43 )
44 return Response(status=error_logging_error_codes["unknown error"])

Listing 7: Logging message generation and emitting in views.py of the inventory mi-
croservice.
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Figure 4.2: Illustration of Python’s simplified import structure.

matted so that they contain meaningful information about the occurrence logged and its
circumstances.

4.1.3 Monitoring and Metric Collection

Metrics are collected over the modules that comprise the microservices at two main points:
the module in which web access is routed through functions (views.py), and the module
which describes how events are formed and emitted (domain_events.py). The two main
categories of these metrics are HTTP request and event counters, and exception counters.
The former increases each time an HTTP request is received or an event is sent out,
respectively, the latter increases when an exception occurs while the application is working.
The exception counters are solely focused on exceptions raised by the requests package, as
such, they are related to HTTP calls that the service makes to the EventStoreDB. Next
to these, system resource metrics such as CPU and memory are also exposed; although,
this is an in-built feature for Linux-based operating systems. Metrics are defined similarly
in both services, as shown in Listing 8 and can be used in either one of the ways shown in
Listing 9.

4.1.4 Observations

During the development process, problems were encountered relating to the methodologies
used, as a single person was responsible for both microservices. This would not happen
if a development team would work on a microservices-based application4, and thus, this
provides valuable practical experience in the practices set by the methodologies in use.
Developers need to quickly realise the shared aspects of the services in development, so
that those can be handled as dependencies, rather than duplicating code over a set of
microservices. This is vital, as code duplication can lead to disparate changes in instances

4As detailed in Section 3.1, the microservices-based approach advocates for small teams that are re-
sponsible for a single service.
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1 performance_metrics = {
2 "http_request_counter": Counter(
3 "inventory_http_request_counter",
4 "Counter of HTTP requests being served",
5 ["method", "endpoint"],
6 ),
7 "event_send_counter": Counter(
8 "inventory_event_send_counter", "Counter of egress events"
9 ),

10 "network_timeout_error_counter": Counter(
11 "inventory_network_timeout_error_counter",
12 "Errors caused by timeouts while establishing connection",
13 ),
14 "http_error_counter": Counter(
15 "inventory_http_error_counter",
16 "Errors caused by HTTP unsuccessful status code response",
17 ),
18 "connection_timeout_error_counter": Counter(
19 "inventory_connection_timeout_error_counter",
20 "Errors caused by timeouts during data transmission",
21 ),
22 "redirect_error_counter": Counter(
23 "inventory_redirect_error_counter",
24 "Errors caused by exceeding redirection limits",
25 ),
26 "connection_error_counter": Counter(
27 "inventory_connection_error_counter",
28 "Errors caused by general network connection failure",
29 ),
30 "ambiguous_network_error_counter": Counter(
31 "inventory_ambiguous_network_error_counter",
32 "Errors caused by exceptions not specifically measured",
33 ),
34 }
35

36 ”””Initialise labels so they can be used later.”””
37 performance_metrics["http_request_counter"].labels("GET", "/")
38 performance_metrics["http_request_counter"].labels("GET", "/health")
39 performance_metrics["http_request_counter"].labels("GET", "/metrics")
40 performance_metrics["http_request_counter"].labels("POST", "/create")
41 performance_metrics["http_request_counter"].labels("POST", "/delete")
42 performance_metrics["http_request_counter"].labels("POST", "/add")
43 performance_metrics["http_request_counter"].labels("POST", "/submit")

Listing 8: Prometheus metrics defined in prom_logs.py.
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1 @network_error_metric.count_exceptions(requests.exceptions.ConnectionError)
2 @http_error_metric.count_exceptions(requests.exceptions.HTTPError)
3 @timeout_error_metric.count_exceptions(requests.exceptions.Timeout)
4 @redirect_error_metric.count_exceptions(requests.exceptions.TooManyRedirects)
5 def execute(self):
6 try:
7 ”””Action resulting in an event being sent increments counter.”””
8 Event.event_counter_metric.inc()
9 except:

10 ”””In case of specific exception caught anywhere in this function,
11 @ decorator increments counter.
12 Attention: when multiple inheritance is possible it can cause multiple increments
13 ”””

Listing 9: Two examples of the Prometheus Python client in use.

Figure 4.3: A list of required packages that are used by a mi-
croservice.

of the shared implementation. If this means that there would be problems in the coop-
eration of the microservices, it can cause application failure. The example of this is the
implementation of events in either microservice. The design process did not consider how
these aspects could be abstracted away from the codebase, so it remained seated inside
each service’s code. While the individual events are handled separately, as these are tightly
coupled with the underlying business logic, the basis for these events is the same. This
small portion is a duplication and should have been implemented separately.
There is also a strong correlation between the dependencies in use in both services. As
this application is rudimentary, there is no need for extended injection of numerous de-
pendencies. As can be seen in requirements.txt, a list of dependencies shown in Figure 4.3
used by Python’s pip package handler, only three third-party packages are used. The best
practice of defining exact versions of used third-party tools can also be noticed. However,
by simultaneously developing two services, the development process had many parallels,
similarities can be found between the implementations of the two services. Based on ex-
perience, the developer must pay close attention to the version of the packages in use and
the capabilities they expect from it. If the configured version is different than the one ref-
erenced during development, incompatibility issues can occur. Conversely, the versioning

50



Figure 4.4: Visualisation of the CI/CDep processes used in the
development process.

information in configurations surrounding the microservices has to follow the changes in
the package versions developers might make over time. These are present in such places
as the Python requirements list or the setup.py module, which defines the expected pack-
ages to be present when running a Python package. This is the job of the developer, as
they are the ones using the dependency, developers and operators must be aware of each
place a configuration information is stored or referenced. This shows a point of connection
between developers and operators that methodologies aim to handle from Section 3.4, as
the seamless operation of the developed software requires clear communication about the
environment that the software needs to function in. This is an important part of DevOps
culture, and the reason for the use of containerisation technologies.

4.2 Continuous Development Environment

The development process is supported by an automated environment that contains a cloud-
hosted version control system, and automated CI/CDep pipelines. GitHub is utilised as
the source code hosting platform, with Git as the local version control client. GitHub
Actions is available through an API and facilitates the use of CI servers for scripted
workflows handling processes such as code linting and image file publishing. The whole
process that is to be detailed here is illustrated in Figure 4.4. Authentication against the
cloud platform is performed with a kubeconfig file and secrets saved inside the repository.
The source code is available at its GitHub repository [5].
The application and its Kubernetes infrastructure is stored in a monorepository, meaning
that files of different processes are parts of the same version control process5. This can be
seen in the repository’s structure, shown in Figure 4.5.
The source code and configuration files of the two microservices are stored as Python
packages under eventStoreTestApp, while the files defining the Kubernetes cluster housing
these services can be found under k8s in separate folders based on function. The master
branch always contains the version that is currently running in the cluster and reachable
for its users, and also the declarative descriptions that are used to build the Kubernetes
cluster running the application. This follows the best practice of keeping configuration files
in a version controlled system, as it allows for a single source of truth about the current
state of the cloud infrastructure, and, secondly, provides a single point where changes

5As opposed to a polyrepository structure, where different projects are stored in their own repositories,
even if they closely interact with each other.
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Figure 4.5: The folder structure of the application repository.

made are assured to be applied to every related system. However, the latter point involves
much more related to CI/CDel/CDep processes.
Application and infrastructure development is carried out by branching out from this mas-
ter branch into two branches, app-dev and k8s-dev, respectively. This follows guidelines
such as GitFlow [51], which give special meaning to each branch used, and a specific
structure for branching out, defining which one can be merged together with which, for
example. The process used in this thesis is a simplified example, shown in Figure 4.6.
While working on these branches, code quality, unit, and image integrity tests are per-
formed. Each push that the central, online repository receives from a local repository in
place on a developer’s machine runs these processes, with the exception of infrastructure
development, as it does not produce image files or run unit tests. The purpose of these
processes are to provide feedback about the compliance of a developer’s code to centrally
defined rules and best practices. For example, Python and YAML code pushed must com-
ply to syntax rules defined in the Black (Python-based) and YAML linter, which are used
for checking code quality. These linters check the code pushed each time. Image integrity
tests make sure that the pushed code is able to be containerised and run as an image.
Unit tests are defined in each microservice’s source code, and the pytest framework [29] is
used each time to run those test and output its feedback. Testing has not been included
in this thesis, only the framework has been integrated. However, in agile methodologies,
testing plays an important part in everyday development processes.
If all checks pass, and the developer wants to integrate changes into the running application
or infrastructure, they need to make a pull request to the master branch, starting a new
set of processes. Firstly, the same processes run as before, but this time the changes
compared are the whole new branch aggregated and the currently running instance on
the master branch. If these checks pass, the pull request can be merged into the master
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Figure 4.6: Visualisation of the git workflow in use during appli-
cation and infrastructure development.

branch. Here, based on what kind of changes have been made, two things can happen. If
changes are situated inside the eventStoreTestApp, the image publisher pipeline makes a
Docker image and publishes it to the GitHub Container Registry, which is connected to
the repository in use. This way the new version of the application takes the place of the
old on the master branch and the container registry as well, with a new version tag. If
changes were made inside the k8s folder, then a process runs which authenticates against
the cloud platform in use to run the Kubernetes cluster, and the kubectl utility is used to
apply the updated descriptor files, causing changes where the declarations have changed.
At this point, branches have been merged into the master, and no further action is needed
on the part of the developer or operator; however, best practice dictates that versions
must be added to any configuration that contains third-party software. This version
is changing each time a new application version is released, and if new versions should
immediately be deployed on release6, manually changing these numbers in the Kubernetes
descriptor files is not efficient. For this, another process has been defined, shown in Figure
4.7. Kustomize [43] is a tool which allows dynamic configuring of YAML templates. The
practical example in this case is that each time a new version is released in the container
registry, the version number is written inside a Kustomize file, which is in turn used
while applying changes through kubectl. What happens here, is that the actual version
is not defined inside the YAML file that is used to deploy the application to the cloud
cluster, it is automatically appended by the Kustomize tool. Thus, if Kustomize is used
with kubectl and cloud provider authentication, a string of processes can be made, where
simply changing the version number to the newly released one and using that Kustomize
file while applying changes to the cluster with kubectl, the deployment of the new release is
automated. Practically, this happens when the GitHub Actions release workflow triggers
an automated change, which clones the repository, changes the version number, pushes the
change back to the repository that called this workflow in the first place, and triggers the
Kubernetes deployment workflow. This deployment will then use the new version number,
inducing a change in the deployed application instance inside the cluster7.
This set of procedures was influenced by continuous practices and GitOps. CI servers
are configured using the GitHub Actions API by files contained under .github/workflows

6As is the case with Continuous Deployment.
7Actually, this workflow is the same that runs when files inside the k8s folder change.
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Figure 4.7: Visualisation of the release process using Kustomize
to automate application versioning.

inside the repository. Each time one of the previously described triggers occur, a separate
server is started where the configured actions are performed. This ensures, that the
developer only needs to interact with the whole system through the version control tool.
As described in Section 3.4.2, continuous deployment is the practice that integrates all the
other practices, continuous integration and continuous delivery as well. By considering,
that from development to deployment everything is automated, this thesis’ continuous
development environment implements the whole continuous ecosystem. The description
of the running infrastructure is contained inside files under k8s, and everything is versioned
down to the version numbers used in deployment, conforming to GitOps principles.

4.3 Cloud Cluster Operation

The Kubernetes environment that is used to host the application is maintained by multiple
operators, not just this writer. Most of the deployment tasks are handled by processes
described in this thesis. These include the deployment of the application, and most of
everything described in Section 2.3.2. Other functions are handled by other operators,
though, such as the deployment of different Kubernetes Operators, mentioned at the end
of Section 2.3.2. The scope of this thesis only includes those functions that are maintained
by this writer, other functions will only be mentioned as necessary.
A Kubernetes cloud environment was used to host the application developed in this thesis.
Next to the processes that involved deploying and updating the elements of this appli-
cation, there were a number of operations support tasks that were required related to
monitoring, such as log and metrics collection, and alerting. These tasks and the Ku-
bernetes cluster environment itself is outside of the scope of this thesis. The following
description heavily relies on the previous description of a standard Kubernetes cluster in
Section 2.3. As that correlates with the structure implemented in this section, specifics
can be compared to the overview provided here.
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4.3.1 Cloud Platform

The cloud cluster hosting this thesis’ application is based on the Amazon Web Services
cloud platform. This platform is entirely handled by third-parties, operative access is given
only to the cluster that is preconfigured for use. This means that any cloud computing
resource that the cluster has available, mainly CPU cores and memory, is outside of the
responsibility of this thesis, operative tasks are focused on cluster management. Inside
the cloud platform, a Kubernetes cluster has been installed and access given to it through
a kubeconfig file. This file contains cluster and authentication information that can be
used to gain access to a specific cluster’s API server. This file is used to manually access
the cluster, and by processes defined in Section 4.2 when automatically applying changes
made during the development process, each by providing this file to the kubectl tool.

4.3.2 Application Deployments

To deploy the application, Deployment objects are used. As described, these objects use
ReplicaSets to deploy similar Pods of the same specifications. The Deployment object is
used to ensure the scalable management of these ReplicaSets. This means that when a
configuration change is applied, the control process that governs the cluster’s operation
will replace these Pods in graceful manner, according to rules defined in the Deployment
object description. Specifics can be found in [39], generally, the process will ensure that
new Pods are replaced gradually instead of tearing the old Pods down at once, ensuring
smooth transition. Listing 10 shows how to define the Deployment object for the inventory
service.
Three of these are used inside the cluster, one Deployment for each of the two services
- inventory and order services - and the EventStoreDB node. The two service contain
more specifications than the EventStoreDB, as these require more configuration to work.
What is similar is the way the containers receive the images they need to run and the
specifications of the ReplicaSets. The image names and versions are set through the
Kustomize tool, already presented in Figure 4.7, which are then downloaded automatically
from the GitHub Image Repository or other image repositories. The number of Pods to
run is given in the spec.replicas value, and every other configuration to be used while
deploying the Pods is described further in the ReplicaSet specification.
Two aspects specific to the deployment of the two services are the liveness probes and
the config volumes. Liveness probes are carried out by the Kubernetes control process to
the defined HTTP port to monitor the functioning of the container. A specific path is
implemented for this, returning 200 status if successful8. The config volume is provided so
that environment-specific variables can be injected into the application running in these
Pods. The network location of the EventStoreDB node is needed so that the application
can communicate with it. However, in order for the system to be scalable, and a best
practice in microservices architecture, the exact location cannot be hardwired into the
application code, it has to be provided by the environment. A ConfigMap object, the one
shown in Listing 11, is used to define this value. Thus, this value can be parsed as an
environment variable according to the Pod template. This way, when a Pod is initialised
and a container starts running, its environment variables will already contain the necessary
values for it to function. The exact value is the DNS name of the Service that handles
access to the EventStoreDB Pod.

8It was not implemented in this thesis; however, the EventStoreDB also has this function. Thus, it also
uses a liveness probe.
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1 apiVersion: apps/v1
2 kind: Deployment
3 metadata:
4 name: inventory-deployment
5 labels:
6 app: inventorymicroservice
7 spec:
8 replicas: 2
9 selector:

10 matchLabels:
11 app: inventorymicroservice
12 template:
13 metadata:
14 labels:
15 app: inventorymicroservice
16 spec:
17 volumes:
18 - name: config-volume
19 configMap:
20 name: eventsourcing-testapp-configmap
21 containers:
22 - name: inventory
23 image: ghcr.io/bproforigoss/inventorymicroservice
24 env:
25 #Variables are imported from ConfigMap here
26 #Excluded for space saving
27 - name: EVENTSTORE_STREAM_URL
28 #Previously imported variables referenced here
29 value: >
30 "$(EVENTSTORE_WEBSCHEME)://"
31 "$(EVENTSTORE_URL):"
32 "$(EVENTSTORE_STREAM_PORT)/streams"
33 volumeMounts:
34 - name: config-volume
35 mountPath: "/etc/config"
36 livenessProbe:
37 httpGet:
38 port: 5000
39 path: /health
40 ports:
41 - containerPort: 5000
42 name: http

Listing 10: Deployment YAML manifest for the inventory service.
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1 apiVersion: v1
2 kind: ConfigMap
3 metadata:
4 name: eventsourcing-testapp-configmap
5 data:
6 eventstoredb_webscheme: "http"
7 eventstoredb_location: "eventstoredb-service"
8 eventstoredb_stream_port: "2113"

Listing 11: YAML manifest for the ConfigMap object.

4.3.3 Routing Inside and Outside the Cluster

In order for these Pods to be easily reachable, separate Services are configured for each.
These have DNS entries that do not change, even with the reconfiguration of the Service
object itself. Thus, their location can be statically set in other objects by using their DNS
entry name. They provide load balancing and routing to the Pods. The load balancing as-
pect is evident when looking at Figure 4.8. It shows the order service under a load testing.
The two graphs represent either one of the deployed Pods and the number of events they
send, caused by the requests coming in at the path "/create". The two graphs rise steadily,
showing that the two Pods share the load equally. This is not enough for accessibility on
the public internet, though. For this, an Ingress Controller has been integrated. This is
one of the controllers mentioned in Section 2.3.2, providing a standard API definition of
a service that needs management processes not native to Kubernetes. An Nginx HTTP
proxy is used to provide routing to the internet through three domains: db.bprof.gesz.dev,
order.bprof.gesz.dev, and inventory.bprof.gesz.dev, routing for the database, the order ser-
vice, and the inventory service, respectively. The exact configuration of this proxy and its
controller is handled by third-parties, only the routing rules are configured in this thesis.
The general method used here is to take the domain name and separate it from the rest
of the URI, this takes up the path that can be matched with the path that is defined in
relation to functions of the application, mentioned in Section 4.1.1. Once the path element
is known, the ingress proxy can route the traffic to the Service element defined in relation
to the URI used to reach it. For example, traffic to inventory.bprof.gesz.dev will be routed
to the Service of the inventory Deployment. This configuration is defined as shown in
Listing 12.

4.3.4 Cluster Certificates

Exposing the two services to the public internet from the cluster would not be possible
without SSL certificates, as HTTPS is required to reach the cluster. In order for these
certificates to be available, another Operator, a Certificate Manager is needed. The Cer-
tificate Manager ensures that the SSL certificates used by the cluster are operable, that
they are requested and issued correctly, and that they remain up-to-date. For this, Let’s
Encrypt’s certificate services are used. Like the Ingress Controller, the Certificate Man-
ager is a portion of the cluster infrastructure that is not maintained by this writer, it is
outside of this thesis’ scope. With a process for certificate requisition available, a Cer-
tificate object needs to be defined for the actual domains that are to be validated. This
object simply defines the domain names that are used by the cluster, the aforementioned
three ending in bprof.gesz.dev, that need to be validated. These domains can then be used

57



Figure 4.8: Grafana panel showing the events emitted by the order
service under load testing.

1 rules:
2 - host: inventory.bprof.gesz.dev
3 http:
4 paths:
5 - path: /(.*)
6 pathType: Prefix
7 backend:
8 service:
9 name: inventorymicroservice-service

10 port:
11 name: http
12 - host: order.bprof.gesz.dev
13 http:
14 paths:
15 - path: /(.*)
16 pathType: Prefix
17 backend:
18 service:
19 name: ordermicroservice-service
20 port:
21 name: http
22 - host: db.bprof.gesz.dev
23 http:
24 paths:
25 - path: /(.*)
26 pathType: Prefix
27 backend:
28 service:
29 name: eventstoredb-service
30 port:
31 name: admin

Listing 12: Routing rules defined in the Ingress YAML manifest.

58



Figure 4.9: Simple visualisation of the cluster environment main-
tained in this thesis.

in other objects to expose services, as authentication can be provided using the issued SSL
certificate.
These parts make up the basic fabric of the cluster that the application operates in.
Logging and monitoring has not been included, as the specifics will be detailed in another
section. The cluster that has been discussed is visualised in Figure 4.9.

4.4 Cloud-Native Monitoring, Logging and Alerting

In Section 3.3.2, additions to the set of practices called the Twelve-Factor Application has
been detailed, and the addition of telemetry mentioned. The telemetry factor considers
that applications deployed over numerous servers, possibly across the globe, can get out
of reach of the developers responsible for them. Access may not be possible, or may be
restricted, such as in the case of a strong security policy separating developers from de-
ployment environments. This necessitates the use of indicators about the health of the
application. In this thesis’ case, metrics and logs have been implemented inside the devel-
oped services to properly monitor them. The solutions used to perform this monitoring
are detailed here, in as much as they are operated inside the scope of this thesis.
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1 from prometheus_client import Counter
2 ”””Prometheus client must be installed separately.”””
3

4 ”””This is a Counter type of metric, it only increments.
5 First argument names the metric examplecount.
6 Second argument gives a detailed explanation supplied with the metric as well.
7 Third argument defines what kind of labels can be added to the metric.
8 ”””
9 example_metric = Counter("examplecount",

10 "An example counter",
11 ["country", "city"])
12

13 ”””The metric is incremented by one by a specific set of labels.”””
14 example_metric.labels(country="Hungary", city="Budapest").inc()

Listing 13: Example implementation of a Prometheus metric in Python.

4.4.1 Metrics

Metrics are collected and managed by Prometheus, a metric management tool.
"Prometheus fundamentally stores all data as time series: streams of timestamped val-
ues belonging to the same metric and the same set of labelled dimensions" [24]. Data
are stored as a time series, all metrics exposed through an HTTP endpoint scraped by
Prometheus are read - or "scraped" - between set time intervals. These intervals provide
individual points of time at which the metrics’ state is known. From this, a series can
be made, showing the progression of a metric’s state by the interval set. For example, if
a scrape time is set at 10 seconds, every 10 seconds Prometheus initiates a scrape of the
metrics, and data points may be read at a minimum of 10 seconds intervals, if successful.
A simple example can be seen in Listing 13. Here, labels are used as well. As quoted, these
provide further individualisation of metrics of the same name. Prometheus, by default,
uses the pull method to collect these metrics, meaning it initiates the read itself instead
of waiting for the applications to push their values individually. Once gained, metrics
are managed and stored by Prometheus, they are queryable as graphs or tabular data
with a specific query language, PromQL [23]. The endpoints that can be accessed to read
Prometheus metrics are configured in Prometheus’ configuration files as hosts and ports
(such as localhost:8080), these are expected to expose a "/metrics" endpoint. This level of
detail is sufficient for the functions in use inside this thesis’ scope, further details about
Prometheus can be found in [25].
In this thesis, both services expose metrics through the "/metrics" endpoint, detailed in
Section 4.1.3. An example of how these metrics are exposed as formatted Prometheus
metrics, and how this is programmed can be seen in Listings 14 and 15.
As already mentioned, Prometheus needs to have the host and port values configured to
know what destination it needs to scrape. However, while operating inside a Kubernetes
cluster, IP addresses can change frequently as Pods are scheduled and deleted. This
requires the frequent reconfiguration of Prometheus, which is inefficient if done by hand.
Prometheus is a tool that needs an Operator to work in a cloud-native environment, the
Prometheus Operator [27]. This Operator is outside of the scope of this thesis; although,
there is a task that has to be performed for it to function. The ServiceMonitor declares how
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1 # HELP inventory_http_request_counter_total Counter of HTTP requests being served
2 # TYPE inventory_http_request_counter_total counter
3 inventory_http_request_counter_total{endpoint="/",method="GET"} 6.0
4 inventory_http_request_counter_total{endpoint="/health",method="GET"} 44363.0
5 inventory_http_request_counter_total{endpoint="/metrics",method="GET"} 14788.0
6 inventory_http_request_counter_total{endpoint="/create",method="POST"} 0.0
7 inventory_http_request_counter_total{endpoint="/delete",method="POST"} 0.0
8 inventory_http_request_counter_total{endpoint="/add",method="POST"} 0.0
9 inventory_http_request_counter_total{endpoint="/subtract",method="POST"} 0.0

10

11 # HELP inventory_event_send_counter_total Counter of egress events
12 # TYPE inventory_event_send_counter_total counter
13 inventory_event_send_counter_total 0.0
14

15 # HELP inventory_timeout_error_counter_total Errors caused by request timeouts
16 # TYPE inventory_timeout_error_counter_total counter
17 inventory_timeout_error_counter_total 0.0
18

19 # HELP process_resident_memory_bytes Resident memory size in bytes.
20 # TYPE process_resident_memory_bytes gauge
21 process_resident_memory_bytes 2.8114944e+07
22

23 # HELP process_cpu_seconds_total Total user and system CPU time spent in seconds.
24 # TYPE process_cpu_seconds_total counter
25 process_cpu_seconds_total 147.16

Listing 14: Excerpt from metrics exposed by the inventory service on "/metrics".

1 @app.route("/metrics", methods=["GET"])
2 def metrics():
3 ”””Requests to this endpoint are also measured.”””
4 http_counter_metric.labels(method="GET", endpoint="/metrics").inc()
5 readings = []
6 ”””The in-built metric collector object is read for the latest
7 state of its metrics.
8 ”””
9 for metric in prom_logs.performance_metrics.values():

10 readings.append(prometheus_client.generate_latest(metric))
11 ”””A separate metric collector for system resources (CPU, memory) is used.”””
12 readings.append(
13 prometheus_client.generate_latest(prometheus_client.PROCESS_COLLECTOR)
14 )
15 ”””All the metrics and their states are returned as plain text.”””
16 return Response(readings, mimetype="text/plain")

Listing 15: Exposition of Prometheus metrics inside the inventory service.
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1 apiVersion: monitoring.coreos.com/v1
2 kind: ServiceMonitor
3 metadata:
4 name: inventorymicroservice-servicemonitor
5 labels:
6 component: microservice
7 spec:
8 selector:
9 matchLabels:

10 app: inventorymicroservice
11 endpoints:
12 - port: http

Listing 16: ServiceMonitor YAML manifest for the inventory service.

Kubernetes Services should be monitored, keeps the Operator up-to-date on the current
state of the Services, and through them the Pods, in the API server. The Operator
keeps Prometheus’ scrape configuration current according to that state. An example of
the ServiceMonitor object is shown in Listing 16. These ServiceMonitors have two main
values: a selector label and a port name. The selector label is used to find all the Pods
that Prometheus has to scrape, comparing the labels that each Pod has to the label set for
the ServiceMonitor. In Listing 16, this is "app: inventorymicroservice". The port name
identifies the port that can be used to make the host and port combination that is finally
configured for Prometheus. In Listing 16, this is "- port: http", a named port whose name
has a relation to a port’s name in the inventory services’ Pod definition. The manner in
which this object connects Pods to a Prometheus instance is illustrated in Figure 4.10 [26].

4.4.2 Logging

Metrics are good for measuring quantifiable performance data; however, they do not pro-
vide as much information as logs can. While metric numbers quantify software perfor-
mance, logs provide detailed information about events that transpire while the application
is functioning. Logging has been implemented as detailed in Section 4.1.2. The logs emit-
ted by the services are routed to the standard output, which is where Promtail scrapes
them.
Promtail is an agent that collects logs from running applications and carries them over to
a log collection solution. There are different sources Promtail can tail logs from, in this
application, this is the standard output. Every location scraped has a Promtail daemon
running, multiple instances have no knowledge of each other [28].
Loki is the log aggregation solution used to store and manage these logs. It saves the
logs by indexing their metadata, with the actual logs being saved in compressed object
chunks. This way, Loki saves cost and simplifies operation [19]. When log messages are
formatted as key-value pairs, Loki parses these fields and outputs them as such. Figure
4.11 shows how these logs can be inspected inside Grafana when Loki is the data source.
These solutions are operated outside the scope of this thesis and additional configuration
is not needed on the part of the application operator for them to be functional.
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Figure 4.10: Illustration of the ServiceMonitor object in use to
connect applications to the Prometheus instance.

Figure 4.11: Error log collected by Loki in Grafana’s explorer
mode.
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4.4.3 Monitoring

The data collected by the aforementioned solutions and mechanisms built into the services
provide good information on the health of the services. However, they are not easily
digestible. Prometheus has limited visualisation capabilities, and the logs stored by Loki
are not categorised further than the data they are indexed by. In order to visualise the
data, Grafana is used.
Grafana is a data visualisation tool where dashboards can be created with panels showing
data from variable data sources in different kinds of representation. This is one of the main
strengths of Grafana, dashboards can be easily customised with panels. These panels can
show graphs, gauges, tables, histograms and heat maps. This set of representative tools
can further be expanded by community plug-ins. It has a dynamic way of outputing data,
as the queries that make up the data included in a panel can be set as variables, instead of
being static. An example for a dashboard can be seen in Figure 4.12, while how multiple
queries and variables are used can be seen in Figure 4.13. Another strength of Grafana is
that it can handle multiple data sources. In this case, these are Prometheus for metrics,
and Loki for logs. However, many other data sources can be included, and this allows for
holistic representation of the whole system in use. Utilising all these data, alerting can
be set up as well, where, when preset conditions are met9, integrated alerting solutions
can be used to push messages to operators and inform them about steps that need to be
taken. These tools include a plug-in for the Slack communication platform, and alerting
tools such as PagerDuty [17].
For this system, Alertmanager [4] has been deployed next to Prometheus. Alerts can be
defined with data about the specifics of the alert and the condition that must be met inside
Prometheus. When the condition is met and remains true for a specific amount of time,
Prometheus fires an alert that Alertmanager catches. Handling smaller tasks, such as
grouping and deduplicating, Alertmanager also routes the alert to the receivers that have
been integrated, Slack in this case. This way, operators can use different clients to keep
up-to-date on the condition of their systems without the need for constantly monitoring
their state through the tools mentioned in this section.
The Grafana instance and the Alertmanager are handled outside of this thesis’ scope,
operations tasks connected with it are the use of features provided by it. Apart from the
mentioned system resource monitoring example in Figure 4.12, panels have been created
that monitor HTTP requests, egress events from services that use network bandwidth,
and errors and their types. These are shown in Figures 4.14 and 4.15. A specific alert
has also been defined as shown in Listing 17. This alert fires when the combined rate
of network errors originating from the serving of HTTP requests received divided by all
HTTP requests received raises above 5% and remains there for at least 10 minutes.

9For example, some utilisation statistic remains above a set level for a set amount of time.
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Figure 4.12: Grafana dashboard showing system resource data of
the deployed services.

Figure 4.13: Multiple queries used in a single Grafana panel.

Figure 4.14: Performance metric panels measured from the de-
ployed services.
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Figure 4.15: Error metric panels measured from the deployed ser-
vices.
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1 - name: orderservice.rules
2 rules:
3 - alert: OrderServiceConsistentNetworkErrors
4 annotations:
5 description: >
6 The rate of network errors compared to HTTP requests
7 has been above 5% for 10 minutes.
8 summary: Order service is constantly emitting network errors.
9 expr: >

10 sum(rate(order_network_timeout_error_counter_total[5m]) +
11 rate(order_http_error_counter_total[5m]) +
12 rate(order_connection_timeout_error_counter_total[5m]) +
13 rate(order_redirect_error_counter_total[5m]) +
14 rate(order_connection_error_counter_total[5m]) +
15 rate(order_ambiguous_network_error_counter_total[5m]))
16 / sum(rate(order_http_request_counter_total[5m]))
17 > 0.05
18 for: 10m
19 labels:
20 severity: warning

Listing 17: Definition of an alert inside Prometheus connected to the order service.
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1 hey -z 60m -c 200 -q 200 -m POST https://order.bprof.gesz.dev/create

Listing 18: The script used to load test the cloud system using the hey tool.

4.5 Use Case of Cloud-Native Software Operation

In order to prove that the system described in previous sections is operable and works
as expected, a load testing scenario will be detailed in this section. Necessarily, some
preexisting conditions were deliberately injected into the system that was tested for it to
perform as needed; however, these conditions were designed to be realistic. The setup
to be detailed could be present in any production environment, taking the scale of the
resources and the services into consideration.
The load testing scenario was run using the hey HTTP load generator [36]. This tool
was used to constantly create HTTP requests at a set rate in order for the load to be
balanced and the test to be reproducible. Different Kubernetes resource limits and load
distributions were tested before the scenario. The goal was to produce a load that caused
a realistic amount of errors stemming from the application overloading the database with
HTTP requests10. This would, over time, produce an alert and initiate the process of
mitigating the effects of the error, and through development processes, finding the root of
the problem and solving it. It was found that using the load described in Listing 18 and
limiting the resources of the database according to Listing 19 was a good combination for
the error rate to fluctuate constantly around 10% of all HTTP requests received by the
application.
These configurations mean firstly that POST requests will be sent continuously for 60
minutes (-z handle) to the defined URL at a per second rate limit of 200 (-q handle) and
with a limit of 200 concurrently running requests (-c handle). This generates a steady
flow of requests independent of the hardware environment the test is run in and the limit
on concurrency enables the all-time load to be limited to a set level. Secondly, the limit
on the CPU resources of the database represents a real aspect of cloud operation, as
resources are not unlimited, only available on-demand. This means that a steady limit
has to be set on how much resources a cloud system element can use in order to keep
operative costs predictable. This limit is subject to projections on predictable user load,
and these projections could be faulty. This is the main preconception of this load test,
that the initial resource allocation was underestimated. The configuration in Listing 19
means that every container inside Pods managed by the Deployment responsible for the
EventStoreDB (initially one in this case) will be limited to a maximum of 100 millicores of a
CPU, or 0.1th fraction of a virtual CPU per Core [7]. Limit is a specific term in Kubernetes
resource allocation, it means that this resource shall never exceed this amount11.
Thus, the injected changes into the system are the following: a resource limit on the CPU
utilisation of the database Pod, and a previously not defined change in the codebase.
This change represents a development oversight that impedes the performance of the
application itself. The requests module allows for setting the timeout value on an HTTP
request made by the client. The developers set this value inside the function responsible

10As described, the system is distributed and its elements communicate over HTTP.
11Another configuration is request, which means that the resource requires the set amount of the resource;

however, it can exceed this amount, if possible.
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1 # Inside the eventstore-deployment Deployment manifest
2 spec:
3 # ReplicaSet specification
4 template:
5 # Pod template specification
6 spec:
7 # Pod specification
8 containers:
9 - name: eventstoredb

10 image: eventstore/eventstore
11 resources:
12 limits:
13 cpu: "100m"

Listing 19: Excerpt from the eventstore-deployment Deployment manifest using CPU
resource limits.

1 def execute(self):
2 Event.event_counter_metric.inc()
3 es_id = uuid.uuid4()
4 headers = {
5 "Content-Type": "application/json",
6 "ES-EventType": self.event_type.value,
7 "ES-EventID": str(es_id),
8 }
9 requests.post(

10 f"{os.getenv('EVENTSTORE_STREAM_URL')}/{self.aggregate_id}",
11 data=json.dumps(self.data),
12 headers=headers,
13 timeout=1,
14 )

Listing 20: Excerpt from the order service’s domain_events.py module with its initial
timeout value.
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Figure 4.16: Error metric panel measuring the values used for
alerting with annotations of specific events during
load testing.

for sending events from the order service to the event store to a minimal value, one second,
as shown in Listing 20.
With this setup, development and operations errors are present inside the system. This
provides insight into the processes that surround cloud-native development and operation,
the same processes that have been implemented in this thesis.

4.5.1 Load Testing Scenario

This section will detail the load testing and its findings. A main point of reference will
be the specific Grafana panel that visualises the metrics used for defining the alert that
is expected to fire during the scenario. Annotations have been made on the panel at set
times, these will be referred to by their capitalised letter. This panel is shown in Figure
4.16.
At 19:00 the load testing was begun with the hey script described previously, annotated
as event A). The generated traffic quickly raised the error rate above 5% and fluctuated
between 9% and 22% when rated at a rate of 5 minutes12. This may go unnoticed by
operators; however, there is an alert defined that constantly monitors the same expression
that is used to calculate the value shown in the panel. As seen in the figure, this error
rate never drops below 5%, and after 10 minutes, an alert fires, at annotation B). This
alert is caught by the Alertmanager and sent to Slack through an integration that allows
messaging on alert. This alert message is shown in Figure 4.17.
This is the moment an operator notices the high rate of errors. It is seen that there is
an increasing load on the system and horizontal scaling is used to more evenly distribute
the load on the database. At annotation C) the replica number of the EventStoreDB
Deployment is raised from 1 to 2 manually to allow time for a permanent solution. This is
done in the way shown in Figure 4.18 by editing the object description inside the system
manually through kubectl. Its effect is shown in Figure 4.19, notice the difference between
the ages of the two Pods. This shows that the previous Pod was not dismantled, instead, a

12The metrics used are counters, meaning they only increase. The rate function of Prometheus allows
for counting the per-second average rate of a time series’ increase over a set amount of time. Here, the
sum of each errors’ rate is the average increase of errors per second over a rolling 5 minute interval. This
is divided by the similarly rated increase of HTTP requests received. This gives the fraction of HTTP
requests resulting in a network error.
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Figure 4.17: Alert firing message received inside Slack.

new one took its place next to the previous Pod. While this is happening, the operations
and development teams responsible receive notification and start figuring out how the
application can be better operated.
From annotation C) and on, a big spike in errors can be seen; however, this is due to
another instance of the EventStoreDB launching and reconfigurations being made while
still under load. This can be noticed in the Pod descriptions shown in Figure 4.20. The
new Pod had to be restarted 3 additional times over the course of more than 8 minutes.
This is due to the liveness probe function13. A similar thing can be noticed about one of
the order service Pods to a lesser extent.
At annotation D), the system warms up and the error rate stabilises; however, it noticeably
remains above the alert threshold. This means that the measures taken were not enough
to lighten the load on the system. The decision is made that the already present database
instances can be allocated more resources. At annotation E), the databases are given 200
millicores of processing power each, as shown in Figure 4.21, raising their individual CPU
share to their double.
After a similar warm up period, at annotation F), the error rate finally drops below the
5% threshold and the alert sends a resolved status in Slack, as shown in Figure 4.22.
This does not mean that the problem is solved, nevertheless. The efforts taken to mitigate
the errors were manual changes, and served only the purpose of keeping the application
operable while the teams responsible were looking at permanent solutions. The operations
team made the decision of allocating more resources to the database while keeping the
replica number at its initial 1. As such, the operator got to work in the established
CI/CDep system to push a new version of the cloud infrastructure to the version control
system. This workflow is shown in Figure 4.23, the Deployment manifest is changed in one
place: the CPU resource limit is raised to 200 millicores, double the original amount. At
annotation G), this change runs through the automated CI/CDep pipeline and is deployed
to the cloud platform in Figure 4.24.

13The liveness probe is a periodic request sent by the Kubernetes control process to a container to see
if it responds. Under high load and when not using separate methods for these probes and other types of
requests, a live Pod might be scheduled to be restarted. This is more due to the probe failing rather than
the container being broken.
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Figure 4.18: Scaling up of the EventStoreDB Deployment object
by increasing its replicas with the changed values
highlighted.

Figure 4.19: The "get pods" option used to see the status of the
deployed Pods after the first kubectl edit.
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Figure 4.20: The "get pods" option used to check the function-
ing of the new Pods during the spike in errors after
annotation C).

Figure 4.21: Scaling the processing power allocation of the
EventStoreDB Deployment object with the changed
values highlighted.
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Figure 4.22: Alert resolved message received inside Slack.

Figure 4.23: The git workflow of making changes to the Kuber-
netes infrastructure.
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Figure 4.24: Dashboard of the GitHub Actions workflows show-
ing the successful run of the merge from the k8s-dev
branch.

By annotation H), the system warms up again and the error rate stabilises under the
threshold again. While this was happening, the developer was looking through the imple-
mentation of the order service to find out if network errors could be caused by the service
itself. What they found was that the timeout value of all connections related to serving
incoming HTTP requests was set too low at 1. They made the decision to set it to 5 to
allow more time for connections to form, even under load. This was carried out as shown
in Figure 4.25. Similarly, at annotation I), the CI/CDep system performed checks and
testing on the pushed changes and after success, it automatically published the new image
version of the software and deployed it to the cloud platform as shown in Figure 4.26.
After the set amount of time, the hey tool returned with a report of the result of the
requests it made to the path given, shown in Figure 4.27. The distribution of errors shows
that the average error rate is representative of the success of the requests that were made.
That is 522 291 successful requests to 233 269 unsuccessful ones, around 30% of all requests
resulting in an error, factoring in the spikes and drops in error levels over the 60 minutes
of the load testing.
In order to test the new system, a new round of load testing was begun with the exact
same amount of load at annotation J). As shown in Figure 4.28, the changes made were
effective, as the error rate stayed around 0 at all times until its conclusion at annotation
K), except for a short spike that remained below the error threshold.
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Figure 4.25: The git workflow of making changes to the order ser-
vice implementation.

Figure 4.26: Dashboard of the GitHub Actions workflows showing
the successful run of the merge from the app-dev
branch.
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Figure 4.27: Error distribution provided by hey on the first test
run.

Figure 4.28: Error metric panel measuring the values used for
alerting with annotations of specific events during
the second load testing.
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4.5.2 Observations

The scenario described in this section utilised many processes that have been implemented
into the workflow of developing and operating the cloud-native platform and solution in
this thesis. Two main observations have come up while running this test.
Firstly, the CI/CDep system and its ease of use. There are objectively well-performing
aspects built into the DevOps platform that are used in this thesis, such as automated
quality checks, unit and integrity tests, and automated deployment to the cloud platform.
These tasks can take up a lot of time if performed manually. The CI/CDep system not
only ensures that automated tasks perform without fault but also speeds up development.
The load balancing test ran for an hour, this is including the start of the errors, the time
to notice them, and the time to push the changes through the CI/CDep pipeline. Even
so, the complete solution could be pushed in under that time, around an hour. This
conforms to what the agile methodologies advocate, the quick incremental changes to
software. Subjectively, the complex task of turning a whole cloud system around in case
of a problem could not have been easier considering the many moving parts that have to
be taken into account.
Secondly, the nature of cloud-native solutions. Kubernetes is one of the biggest technolo-
gies in the cloud-native ecosystem and its powerful capabilities enable operators to make
significant changes to a cloud cluster with minimal effort. There were multiple times when
a small change was introduced to the whole cluster during this test, and all was as easy
as changing a line of code. More in-depth configurations would have to take other fac-
tors into account; however, the capabilities of Kubernetes enables its operators to quickly
and easily enact changes in a complex cloud system with ease. The way changes are
applied, only configuring resources when changes connected to it are noticed, also allows
for extended automation. Except for developing the cloud infrastructure itself, there was
no need for the developer to do anything related to Kubernetes or cloud administration.
This makes it very easy to apply small changes without the need of extensive cooperation
among personnel.
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Chapter 5

Conclusion

The rapid evolution of cloud computing enabled developers and operators to provide highly
available, on-demand services to customers worldwide. This evolution brought with it
practices and methodologies that must be used in order to truly utilise the advantages of
cloud computing. In this thesis, these methodologies, practices and cultural shifts were
described.
DevOps was introduced by detailing its aspects, such as continuous practices or changes
in the cooperation of teams from different areas. DevOps is not a collection of practices,
it is a cultural shift spanning the whole width of the IT field. Its tenets stem from the
cultural environment formalised in the Agile Manifesto. The authors of this manifesto
envisioned a world where developers can have all the tools at their disposal to produce
valuable and optimal software. With the growth of the online world, these demands
came to the fore, and developers gained valuable practical experience in making web
services. This learning curve culminated in many of the patterns described, such as the
microservices architecture, the event sourcing pattern, or the Twelve-Factor Application.
These interconnected aspects of the developing IT field makes up a very special ecosystem
today that fully embraced the cloud evolution.
Kubernetes was introduced as one of the most dynamic and powerful orchestration solu-
tions not only able to dynamically oversee a cluster of containerised applications but to be
used in other fields of IT as well. From telecommunication to artificial intelligence, Ku-
bernetes is a template that can be used to spur on research and development utilising the
advancements in cloud computing. Since its open-source release by Google in 2015, Ku-
bernetes has taken over the IT field and is now a mainstay with developers and operators
alike.
This all culminates in what it is to be cloud-native. Subjectively, judging from the research
that went into this thesis and the practical aspects that were measured during the load
testing scenario, the cloud-native ecosystem holds simplicity and dynamism in the highest
regard. The manner in which the utilised solutions interconnect and seamlessly operate
as a single system is astonishing. To see so many software made for different purposes
work so well together embodies what the open-source community, and through that the
cloud-native ecosystem, is working towards: a world in which everyone has access to good
software from talented developers to achieve anything they wish.
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