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Kivonat

Ez a dolgozat átfogó tanulmányt mutat be a szolgáltatásromlási (Service Degradation –
SD) események azonosításáról és előrejelzéséről hálózati környezetekben, amelyek mind
egy egyetemi kollégium LAN adatait, mind a hálózati forgalomban található korai folyam
jellemzőket magukban foglalják. A kutatás első része statisztikai technikákat, például in-
terkvartilis terjedelem (Inter Quartile Range – IQR) és Z-metrika elemzéseket alkalmaz,
a hálózati teljesítmény jelentős eltéréseinek felismerése érdekében, ezalatt különösen ért-
ve a szélsőséges késleltetéseket és jittert, amelyek potenciális SD-t jeleznek. Ezt a mód-
szert különböző környezetekben alaposan validáltam, minimális eltéréseket tapasztalva, és
megerősítve annak következetességét és megbízhatóságát. A tesztek azt sugallják, hogy a
módszer alkalmazható mind a lakossági, mind a vállalati hálózatokban, így rendszerezett
módszertani alkalmazásokat és értékes annotált adatkészletet nyújtva a terület kutatói
számára.

A kutatás második része egy új módszert mutat be az SD előrejelzésére hálózati fo-
lyamatokban korai flow jellemzők (early flow features) elemzésével, különösen a csomagok
közötti érkezési időre (PIAT) fókuszálva. A módszer a hálózati folyamatok megfigyelhető
(Observable – O) szegmenseire összpontosít, hogy következtetéseket vonjon le a nem meg-
figyelhető (Non Observable – NO) szegmensek viselkedéséről. Egy átfogó analízissel azo-
nosítottam az optimális O/NO szétválási küszöbértéket 10 csomagnál, amely egyensúlyt
teremt az előrejelzési pontosság és az erőforrás-felhasználás között. A tesztelt modellek kö-
zül az XGBoost felülmúlta a többit, 0,74-es F1-score-ral, míg a balanced accuracy-je 0,84
és AUROC értéke 0,97 volt. A regressziós elemzés kimutatta, hogy az XGBoost (és a többi
vizsgált modell) kevésbé pontos az SD események számának, hosszának és a leghosszabb
SD események indexeinek előrejelzésében.

Összességében ez a dolgozat kiemeli e módszerek megvalósíthatóságát és hatékony-
ságát az SD események észlelésére és előrejelzésére, robusztus keretrendszert biztosítva a
hálózati adminisztrátorok számára a potenciális szolgáltatásromlás előzetes kezeléséhez. A
jövőbeli munkának az adaptív küszöbértékek finomítására, a folyamok közötti információk
feltárására és ezeknek a módszereknek a különböző hálózati környezetekben történő vali-
dálására érdemes összpontosítani a robusztusság és alkalmazhatóság növelése érdekében.
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Abstract

This thesis presents a comprehensive study on identifying and predicting Service Degrada-
tion (SD) events in network environments, encompassing both LAN data from a university
dormitory and early flow features in network traffic. The first part of the research lever-
ages statistical techniques, such as Interquartile Range (IQR) and Z-score analyses, to
detect significant deviations in network performance, specifically extreme delays and jit-
ter, indicating potential SD. This methodology was rigorously validated across various
settings, demonstrating minimal deviations and reinforcing its consistency and reliability.
Initial tests suggest its potential applicability in both residential and enterprise networks,
contributing systematic methodological applications and a valuable annotated dataset to
the field.
The second part of the research introduces a novel method for predicting SD in network
flows by analyzing early flow features, particularly Packet Inter-Arrival Time (PIAT) val-
ues. By focusing on the observable (O) segments of network flows, the method infers
the behavior of non-observable (NO) segments. Comprehensive evaluation identified an
optimal O/NO split threshold of 10 packets, balancing prediction accuracy and resource
utilization. Among the models tested, XGBoost outperformed others, achieving an F1-
score of 0.74, a balanced accuracy of 0.84, and an AUROC of 0.97. The regression analysis
revealed that XGBoost (and the other models) have limited accuracy in predicting SD
count, length, and indices of the longest SD events.
Overall, this thesis underscores the feasibility and effectiveness of these methodologies for
SD event detection and prediction, providing a robust framework for network administra-
tors to preemptively address potential service degradation. Future work should focus on
refining adaptive thresholds, exploring inter-flow information, and validating these meth-
ods in diverse network environments to enhance their robustness and applicability.
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Chapter 1

Introduction

In the era of relentless digitization, computer networks have become critical to our every-
day digital activities, underpinning everything from streaming high-definition videos to
facilitating real-time multiplayer games. As the demand for uninterrupted, high-quality
digital experiences grows, so does the need for resilient and high-performing networks that
can consistently meet these expectations.
However, service degradation (SD) poses a substantial threat to these expectations. SD,
characterized by the deterioration of network performance, leads to suboptimal user expe-
riences due to factors such as network congestion, inefficiencies in data routing, or external
interferences [18, 31, 5]. The effects are noticeable: users may experience increased latency,
buffering in video streams, or even complete service outages. In essence, SD undermines
the promise of a seamless digital experience.
This thesis aims to study two main problems: (i) It examines network behavior in a
measured network flow dataset, with the intention of identifying the flow features and
behavioral patterns that are indicative of SD. And (ii) it explores the constrained envi-
ronment of residential network devices to harness a small portion of the forwarded data,
an analyze whether it can be utilized for predicting behavior in later parts of the traffic.

SD Pattern Analysis Despite various previous contributions, gaps remain in accu-
rately diagnosing the signs of SD in computer networks. Building upon these foundational
studies, this research employs Packet Inter-Arrival Time (PIAT) analysis in a university
dormitory network setting—particularly susceptible to SD—to focus on latency as a prin-
cipal indicator of SD. My analysis specifically targets TCP flows and LAN segments, where
PIAT, analyzed through Z-score and Interquartile Range (IQR) methods, provides critical
insights into response latency without the confounding effects of end-device delays.
I present a robust methodology for detecting SD events in network flows. By applying
empirical heuristics across all application categories, I effectively identify and label these
events, thereby enhancing the understanding of SD within networked environments. Cor-
responding digital artifacts of my methodology are provided as supplementary materials
to support the replicability of the analysis. The labeled dataset of network flows with
identified SD events is also available at a digital source ([13, 12]), serving as a valuable
resource for further research into network service degradation.
The methodology has proven robust when tested across various network environments,
suggesting its applicability beyond the initial university dormitory setting. The identified
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SD events correlate strongly with potential impacts on the Quality of Experience (QoE),
suggesting areas for network improvement and further research.

Network Behavior Prediction in Residential Environments To proactively coun-
teract SD, it is crucial to gain insights into network flows through comprehensive moni-
toring. Yet, network devices, which serve as the gatekeepers of residential networks, often
have limited computational capabilities. While they are proficient at forwarding traffic,
they struggle with the intensive monitoring of every flow due to hardware limitations. In-
stead of exhaustively monitoring every packet in a data flow, a common workaround is to
observe each flow up to a predetermined packet threshold. Once this threshold is reached,
flow management transitions to hardware accelerators (HAs), which handle high volumes
of data efficiently but lack the capability for detailed, packet-level monitoring. Conse-
quently, this approach effectively splits flows into observable and non-observable parts,
leading to the loss of detailed insights into the flow’s behavior beyond the threshold.
This situation leads to my primary research question: In the face of these constraints,
how can we leverage the observable segments of network flows to deduce the status of
the non-observable segments, thereby identifying and possibly predicting SD in residential
networks? The core of my approach is to derive patterns from the observable segments,
which can then be extrapolated to make informed assumptions about the non-observable
segments and, by extension, the network’s overall health.
This study introduces a method called intra-flow service degradation detection, which uses
early flow features to predict SD in network flows after they transition from an observable
(O) state to a non-observable (NO) state. By capturing information from the initial part
of a flow, I aim to infer the behavior and characteristics of the flow after it moves to a
fast-processing but less observable state.
My experimental design focused on evaluating the predictive power of observable parts of
network flows to predict various metrics in the non-observable parts. I targeted five distinct
objectives: detecting the presence of SD events, predicting the count, length, and indices
of the longest SD events. I compared multiple models, including simple heuristics and
advanced techniques such as Logistic Regression, XGBoost, and Multi-Layer Perceptron
(MLP). This comprehensive assessment aimed to identify the most effective models for
each objective.
The classification analysis I apply reveals that the XGBoost model, evaluated at an O/NO
split threshold of 10, excels in predicting non-observable SD events. This model outper-
forms simpler heuristics and other sophisticated models by offering a balanced performance
with high precision and good recall. The XGBoost model’s robustness and efficiency make
it the optimal choice for this prediction task, highlighting the importance of incorporating
comprehensive early flow features. The chosen threshold of 10 strikes an effective balance,
providing sufficient information for accurate predictions without unnecessary complexity.
My regression analysis indicated that the XGBoost model performed best for predicting
non-observable SD events, especially at O/NO split thresholds of 5 and 20. This model
consistently provided more accurate predictions for SD count, length, and indices of the
longest SD events with the heuristic models showing slightly less effectiveness. However,
meanwhile the models were able to identify whether a flow had SD events after the O/NO
split at all, for flows with SD events in the NO parts, all models, including XGBoost,
struggled to predict more granular information accurately. This highlights the challenge
of predicting detailed SD characteristics in non-observable parts and underscores the need
for robust models and sufficient information from observable parts.
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This research demonstrates the feasibility and effectiveness of using early flow features
to predict SD in network flows after they become non-observable. Ultimately, this work
offers a blueprint for early detection and mitigation of service degradation issues, ensuring
a more resilient and high-performing network. Through proactive monitoring and analysis,
I aim to prevent potential disruptions before they impact the end user, thereby delivering
a seamless digital experience.
The source codes used for analysis and model evaluation are also provided as digital
artifacts, alongside with the detailed results of the evaluated model metrics [14].
The rest of this thesis is organized as follows: Chapter 2 explores pieces of related work
focused on the analysis of SD in various domains. Chapter 3 presents the methodology of
network flow measurement and feature generation, introduces the dataset that is gathered
using this technique and performs descriptive analysis on the data. In Chapter 4, I explore
the concept of SD in network traffic, providing the necessary background, and execute a
comprehensive statistical analysis to select LAN side delays from the collected flows and
identify patterns that indicate SD in the the flows. Following this, I cross-validate on
data collected at different times and locations. Chapter 5 describes the limitations of the
home network environment, exploring the operation of residential routers. Along this line
I propose a methodology of separation of the network data into an O and NO part, and
investigate the statistical behavior of the delays and SD events in each part along different
splits, and evaluate the predictive performance of the O part information for forecasting
NO behavior. Finally, Chapter 6 concludes my work.
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Chapter 2

Related Work

Table 2.1: Summary of Related Works and Proposed Work

Reference Methodology Network
Type Key Findings Year

Bremler-Barr
et al. [4]

Degradation Analy-
sis

Internet
End-to-End Identified RTT deviation 2003

Abdelkefi et al. [1] PCP of delay and
loss signals

Internet
End-to-End

Scalable and cost-effective model for Internet path service
quality assessment 2014

Xian et al. [35] Prediction-based
Algorithm

Optical Data
Center

Matched theoretical prediction with actual traffic, mitigated
network congestion 2016

Hou et al. [17] Forecasting Algo-
rithm

Optical Data
Network Mitigated network congestion 2019

Hardegen et al. [15] DNN Campus Net-
work Predicted traffic flow characteristics 2020

Marra and Cor-
man [21]

Delay to Disruption
Analysis

Public
Trans-
portation
Networks

Analyzed real disturbances to identify disruptions 2020

Cortellessa and
Traini [9]

Latency Degrada-
tion Detection

Microservice-
based Appli-
cations

Detected artificially injected latency degradation 2020

Traini and Cortel-
lessa [30] LDP Detection

Service-
based Sys-
tems

Diagnosed performance issues 2023

Wu et al. [33] Real-Time Packet
Loss Monitoring - Emphasized real-time passive packet loss detection 2023

Pons et al. [27] GIPS metric Public Cloud
VMs

Detected inter-VM interference and estimate performance
degradation, identify degraded VMs 2023

Amaral et al. [2]
Heuristic model for
analyzing accumu-
lated latency

Cloud Gam-
ing

Anticipated visual degradations before they occur, allowing
proactive mitigation 2023

Li et al. [19] Adaptive Bitrate
Algorithm

Live Video
Streaming

Stochastic adaptation of bitrate based on network conditions
and client states to improve QoE 2023

Zhu et al. [36] Degradation Aware
User Allocation

Edge Com-
puting

Optimized resource usage to increase the number of users
served by introducing controled SD 2024

Proposed Work PIAT Analysis Residential
LAN

Detected LAN-side service degradation and predicted degra-
dation in the non-observable part of the traffic -

The endeavor to discern network behavior, particularly in foreseeing service degradation,
has been an ongoing pursuit in the domain of network monitoring and optimization, though
only a limited number of studies directly intersect with our specific domain of interest. An
early study by Bremler-Barr et al. [4] from 2003 delved into the predictability of end-to-end
Internet service degradations by analyzing deviations in round-trip time (RTT) between
clients and servers. Their work aimed at understanding the patterns and predictability
of service degradations, providing insights into how network performance can be analyzed
and predicted over time.
Abdelkefi et al. [1] present a method to assess Internet path service quality using end-to-
end delay and loss measurements, called SCI (Service-quality Characterization of Internet-
path). SCI constructs performance signals from these measurements, including aggregate
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delay, average delay, and aggregate loss signals. Abrupt changes in these signals are de-
tected using Principal Component Pursuit (PCP), and the detected changes, along with
loss information, are mapped to service-level events causing degradations and failures.
The approach quantifies service quality through three metrics: availability, stability, and
fatigue. The authors evaluate their work on a dataset collected from a real operational
environment demonstrates that SCI effectively detects abrupt changes and accurately iden-
tifies service-level events, thereby confirming its feasibility for service quality assessment
based solely on end-to-end measurements.
Hardegen et al. [15] employed Deep Neural Networks (DNN) to predict certain character-
istics of traffic flows within a campus network. Their approach utilized DNN to estimate
the throughput and duration of flows, offering a proactive means to understand network
behavior before notable degradations occur. The results from their study illustrated a
promising avenue for using machine learning techniques in predicting network flow char-
acteristics, albeit in settings with ample computational resources. A real-time packet loss
monitoring system proposed by Wu et al. [33] addressed the issue of packet loss leading to
network quality of service degradation. Though the detailed methodology and results were
not available, the work emphasizes real-time passive packet loss detection for estimating
network service quality.
Traini and Cortellessa [30] explored latency degradation patterns in service-based systems
using a concept called Latency Degradation Patterns (LDPs) to diagnose performance is-
sues. They integrated LDP detection in the software development process, demonstrating
how recognizing patterns in latency could be instrumental in diagnosing performance is-
sues in service-based systems. In a similar environment, Cortellessa and Traini [9] delved
into detecting latency degradation patterns in microservice-based applications, identifying
clusters of requests subject to latency degradation. Through a case study, the effective-
ness of their approach in detecting artificially injected latency degradation patterns was
demonstrated.
Pons et al. [27] introduce Cloud White, an approach designed to detect inter-VM interfer-
ence and estimate performance degradation in public cloud environments running multiple
latency-critical virtual machines (VMs). The presented work addresses the challenge of
identifying victim VMs – i.e. those experiencing performance degradation due to resource
contention – and estimating their performance loss using multi-variable regression models.
The approach leverages the Giga Instructions Per Second (GIPS) metric to discern victim
VMs from inflicting VMs, which increase their load and cause interference. Cloud White
dynamically estimates the performance degradation, focusing on the 95th percentile tail
latency, ensuring compliance with Quality of Service (QoS) requirements. Experimen-
tal results demonstrate that the approach achieves a low prediction error, allowing cloud
providers to optimize server utilization while mitigating the need for overprovisioning.
The scope of SD research also extends to the transporation sector. Its implications are
explored in public transportation systems in a study by Marra and Corman [21]. The
authors investigated the transition from delay to disruption and its impact on service
degradation, analyzing real disturbances in Public Transportation Networks to identify
disruptions with different characteristics. This work provides a different perspective on
understanding the relationship between delays, disruptions, and service degradation in
networks. In the automotive industry, with a focus on synchronized systems, the detection
of time-delay attacks and their impact on traffic latency was studied by Luo et al. [20].
While the detailed methodology was not available, the research hinted at detecting and
locating time-delay attacks in Time-Sensitive Networking (TSN), thus addressing latency
variations in a specific networking context.
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Recent studies have particularly highlighted latency as a reliable indicator of video quality
degradation in online gaming and video streaming. Amaral et al. [2] investigate the impact
of network impairments on video quality in cloud gaming and introduces an algorithm to
predict real-time visual degradations. Cloud gaming, which runs games remotely in the
cloud and streams them to users, faces challenges due to its heavy reliance on network per-
formance. The research identifies increasing accumulated latency in a moving window as
a strong predictor of packet loss, which leads to visual degradation. Utilizing this insight,
the developed algorithm anticipates visual degradations before they occur, enhancing the
gaming experience by allowing proactive measures to be taken. Extensive testing across
various video game scenarios demonstrates the algorithm’s effectiveness in predicting and
mitigating visual quality issues, thus improving the reliability and playability of cloud
gaming platforms. Following similar veins, the study of Li et al. [19] introduces Fleet,
an adaptive bit rate algorithm designed to enhance user QoE in low-latency live video
streaming. Fleet addresses the dual challenges of optimizing QoE under dynamic mobile
network conditions and ensuring low latency with minimal visual quality degradation. It
employs a stochastic model predictive controller that integrates network conditions and
client states for bitrate adaptation. Key components of Fleet include an HTTP chunk-
level bandwidth measurement algorithm to tackle the idle period problem, a throughput
probability predictor for capturing mobile network uncertainties, and a triple threshold
playback speed controller for latency management. A comprehensive evaluation confirms
Fleet’s effectiveness in improving live video streaming experiences, even in fluctuating
network environments.
On a different note, some perspectives in the literature treat SD not merely as a technical
challenge but as a strategic resource management tactic. These studies suggest that SD
can be intentionally implemented to strategically degrade service resources, aiming to
maximize profitability even if it requires deliberate reductions in Quality of Service (QoS)
to enhance overall profitability.
Xian et al. [35] proposed an alogrithm for predictive resource allocation in Optical Data
Center Networks. Service degradation is utilized in this approach to manage network over-
loads by predictively reducing the Quality of Service (QoS) in a controlled manner when
the forecast traffic load is high, thus preventing service denial. Simulation results indicate
that their approach effectively increases provider profit and reduces network congestion
by lowering the blocking rate. Similarly, Hou et al. [17] presented a forecasting algo-
rithm to support service degradability in optical data networks. Their algorithm aimed at
maximizing service provider profit by mitigating network congestion, a crucial aspect in
maintaining network performance. The results demonstrated a notable reduction in net-
work congestion, thus maximizing profit. Zhu et al. [36] address the high service demand
problem in edge computing. In this environment heterogeneous and resource-constrained
edge servers struggle to meet the increasing service demands, especially during peak peri-
ods. Instead of focusing fulfilling prescribed service requirements totally that often result
in significant user loss, the authors explore the concept of controlled service degradation.
By allowing a certain degree of service requirement violations, more users can be accommo-
dated, thus optimizing resource usage. However, to balance this, users receive appropriate
compensation for any degradation, ensuring overall satisfaction without incurring excessive
costs that could reduce service profit.
Contrastingly, our work navigates the intricacies of residential LAN environments, where
resource constraints are prevalent. Our approach, based on PIAT analysis up to a prede-
termined packet threshold, seeks to provide a balanced approach between resource conser-
vation and effective network monitoring. In line with the presented related works, we also
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distinguish latency as a key metric for service degradation identification and use statistical
methods to pinpoint significant outliers that indicate SD. Our work also emphasizes prac-
tical implications in hardware-constrained environments, targeting the internal segment of
networks to provide early indications of potential SD. Our preliminary findings underscore
the potential of this approach in paving the way for refined methods of monitoring service
degradation in such constrained environments, thus contributing a novel perspective to
the domain of network monitoring and optimization.
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Chapter 3

Network Flow Data Collection

In this chapter I explore the process of network flow data collection and present the
collected data using this approach. Section 3.1 introduces the main concepts for flow
measurement, including the definition of a network flow, the pipeline used for assigning
packets to flows, and the generation of various flow features. It also presents the flow
measurement framework, NFStream, that I utilized in this thesis for the purposes of
data collection. Section 3.2 describes the measured network traffic dataset presenting the
parameter settings used for data collection. The section provides a comprehensive overview
of the data distribution, both in terms of the temporal characteristics and flow feature
characteristics. The analysis is also found complete with codes in a Jupyter Notebook file
at [13].

3.1 Network Flow Measurement

Figure 3.1: The relationship between packet streams, flows, flow
properties, and flow features.

A flow represents a collection of network packets observed at a particular point over
a defined timeframe. Packets within the same flow share common properties, typically
identified by a five-tuple. This five-tuple generally includes the source and destination IP
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addresses, protocol identifier, and the source and destination ports. For a precise definition
of flow, refer to [32]. The calculation of flow features relies on the packets associated with
the flow. Measurable features can include the sizes of the packets (referred to as packet size
or PS) and the intervals between observing consecutive packets in the same flow (referred
to as packet-inter-arrival-time or PIAT). The connection between flows, their properties,
and their features is illustrated in Figure 3.1.

Figure 3.2: Packet processing phases from capture to flow entries.

The process from packet capture to creating flow entries is detailed in Figure 3.2. Initially,
packets are timestamped (necessary for computing time-related features like flow start,
end, and duration) and then undergo packet selection. This optional step, often used
to manage resource constraints (e.g., computational or storage), reduces the number of
packets to be processed. Packet selection can involve sampling (choosing a subset of
packets) or filtering (focusing on specific endpoints or IP ranges). Unselected packets are
discarded. The selected packets are then organized into flow entries.
Flows with packets moving from one endpoint to another are termed unidirectional flows
(uniFlows). However, because network paths can be asymmetric, flow features may dif-
fer statistically depending on the direction. Therefore, directionality is crucial in traffic
measurement. For flows with packets traveling in both directions between endpoints (in
essence two unidirectional flows in opposite directions), bidirectional flows (biFlows) are
considered. The distinction between uniFlows and biFlows is shown in Figure 3.3.

Figure 3.3: The difference between unidirectional flows and bidi-
rectional flows.

In practical applications, flow entries are managed in a flow cache. Managing flow entries
involves creating, updating, and identifying expired entries. Figure 3.4 illustrates the
analysis and comparison of each captured packet against flow cache entries. A new entry
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is created when a packet does not match any existing flow in the cache. Mapping new
packets to flow records is challenging, especially with a large number of flow records in
the cache. To optimize lookup time, each entry is stored with a flowID, a hash based
on the five-tuple. For each new packet, a packetFlowID is computed and compared to
existing flowIDs in the cache. If the IDs match, the packet is used to update the features
of that specific flow. A backward flow ID (bwdFlowID) is also stored for each flow entry,
computed with swapped source and destination IP addresses and port numbers, to match
packets in the reverse direction for bidirectional flows. If an arriving packet matches this,
apart from the general, direction–agnostic flow features, only the features corresponding
to the backward direction are updated.

Figure 3.4: Organising the captured packets into flows.

There are a large amount of flow features that can be captured or computed in flow
measurement [23, 25]. Many of these include statistical transformation of aggregated
packet-level features, like the mean, minimum, maximum or standard deviation of packet
sizes or PIATs. Others are counters of specific packet characteristics, like TCP packet
flags. Flow level features are also often recorded, like the packet count or total duration
of the flow. The former can be derived by a simple counter, while the latter is the
difference between the arrival time of the last packet and the first packet in the flow. All
the aforementioned features can be calculated for biFlows taking into consideration all
the packets together, or the two directions separately. Other features that require Deep
Packet Inspection (DPI), for instance information regarding the underlying application
or service name of the flow. By inspecting the IP and MAC addresses further service or
device specific information can be gathered, like the device vendor from the Organizational
Unique Identifier (OUI) in the MAC, or the Autonomous System Number (ASN) or Server
Name Indicator (SNI) corresponding to the IP addresses and hostnames.
Tracking active flows and detecting their expiration are essential for managing flow entries
in the flow cache. Flows can expire for various reasons. One reason is if no packets from the
flow have been observed for a specified period, known as passive or idle timeout. Passive
expiration prevents incorrectly identifying different flows as the same. For example, a host
initiating multiple new TCP connections to another host might reuse the same source
port after exhausting the range, causing confusion if not expired appropriately. Another
reason for regular expiration is long-lasting flows. For real-time network management, it
is impractical to store such flow entries for extended periods. For instance, a network
administrator might need to know about a lengthy file download promptly rather than
hours later. Thus, flows are regularly expired even with continuous packet flow, termed
as active timeout. Additionally, flows naturally expire when a TCP packet with FIN or
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RST flags is observed. Note that natural expiration requires understanding the transport
protocol’s signaling semantics to avoid missing teardown or out-of-sequence packets. Other
less common expirations include emergency expiration (to prevent system crashes when
the flow cache is full) and cache flushes (required during system reconfigurations affecting
flow entries). For a more comprehensive discussion on flow measurement, refer to [16].

3.1.1 Network Data Analysis Framework

For flow measurement and feature computation I employed the open-source NFStream [3]
framework, enabling traffic measurement at high network throughput. The utilization of
this framework ensures the reproducibility of my work. The framework captures numer-
ous flow characteristics, such as IP, TCP, and UDP packet addresses, and is also suitable
for collecting early flow characteristics. Furthermore, it comprises a wide array of com-
putational statistical analysis-centric features, making it suitable for producing in-depth
analytics. NFStream also employs the nDPI library [10] for Layer 7 visibility through
DPI, extracting the application type carried by the flow and other specific pieces of data.
Additionally, the solution enables users to implement modular plugins for network monitor-
ing, integrating custom logic into the observation process and facilitating the development
of unique methods without the need to create new network flow analysis software. The
generated modules are portable and do not necessitate hardware configuration require-
ments, owing to the robustness of NFStream.

3.1.2 Early Flow Statistics

Early flow features are observation-based analytical indicators that are calculated from
packet characteristics at early stages of the flow. Opposed to conventional flow features
(like IP address or protocol) they are susceptible to temporal service circumstances making
them ideal indicators of early flow behavior. Using the splt_analysis parameter during
the execution of the NFStream flow generation, the number of packets reserved for early
flow feature extraction can be set.
In my work, the focus is analyzing the the flow behavior in depth at the early stages. To
this end, I will employ three early flow features, which are as follows:
(i) NFStream compiles the packet directions of a given flow in the splt_direction list.
Three distinct values are identified in terms of direction. A 0 marks a packet traveling
from source to destination while a 1 stands for the opposite direction. In the case of −1,
no packet was sent in this state of the flow (e.g. due to the flow terminating early).
(ii) The framework stores the packet size values in the splt_ps list, with the packet size
measured in bytes. It is also possible that no packet was sent; in this case, we cannot
interpret the size of the missing packet, and the framework marks the packet absence with
−1.
(iii) Finally, the times elapsed since the arrival of the last packet, i.e. the PIATs are stored
in the splt_piat_ms list recorded in milliseconds. For the first packet in the flow, this
value always takes on a 0 value, and for the missing packet, as with the previous cases, it
is marked with −1.
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Figure 3.5: High-level topology of the measured network.

3.2 Dataset

The dataset utilized in my study comprises network traffic data from a university dormi-
tory network. The topology of the network, as shown in Figure 3.5, provides a high-level
overview, abstracting specific details like the nature of network connections and internal
building topology into simplified representations. Three primary locations within the dor-
mitory network are depicted, each based on the physical grouping of buildings. Location
1, positioned on university premises, serves as the uplink router site where traffic was cap-
tured via a Switched Port Analyzer. Location 2 is situated a few kilometers away on the
city outskirts, and Location 3 is located in a different town, connected through multiple
hops as indicated by a dotted line in the figure.

Table 3.1: Characteristics of the Captured Network Flow Data

Monday Tuesday Wednesday Thursday Friday

Flow Count 3,185,436 2,513,156 3,092,647 2,703,948 2,865,281

Start of the Measure-
ment 2024-01-15 19:24:40 2024-01-16 19:34:09 2024-01-17 19:26:35 2024-01-18 19:20:36 2024-01-19 19:20:35
End of the Measure-
ment 2024-01-15 20:18:29 2024-01-16 20:16:14 2024-01-17 20:18:01 2024-01-18 20:15:01 2024-01-19 20:15:01
Measured Timespan 53.81 minutes 42.09 minutes 51.44 minutes 54.41 minutes 54.43 minutes

Min Flow Rate [ 1
s

] 78 312 385 70 319

Max Flow Rate [ 1
s

] 3469 3511 3766 3199 2651

Mean Flow Rate [ 1
s

] 986.2 994.92 1001.83 827.91 877.04
Std. Dev. of Flow Rate
[ 1

s
] 247.48 270.75 241.2 228.51 322.27

Min Data Rate [MiBps] 0.0587 0.8091 1.2242 0.0807 0.3239
Max Data Rate
[MiBps] 78,087 108,119 73,567 137,937 83,792
Mean Data Rate
[MiBps] 243.49 307.21 254.69 244.64 204.68
Std. Dev. of Data Rate
[MiBps] 1475.07 2322.29 1517.05 2541.15 1603.97

Flow Count after filtering 1,464,421 1,097,956 1,400,967 1,089,312 923,214

Flow Count after LAN-
side delay extraction 1,356,999 1,012,526 1,282,952 1,002,830 845,631

3.2.1 Flow Measurement Configuration

For network flow measurement, I comfigured NFStream as follows:

• I filtered the traffic capture to IPv4 TCP traffic only; the rationale for this choice is
explained in Section 4.1.4.
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• Flow expiration settings were configured to terminate all flows after 2 minutes of
inactivity following the last received packet (passive timeout), or after 30 minutes
regardless of activity (active timeout).

• Packet size accounting was configured to include the IP header, but tunnel decoding
was not enabled for this measurement.

• The nDPI library [10] was used to dissect up to 20 packets, which allowed us to
identify application usage.

• I analyzed statistical features such as packet size, PIAT, and packets with various
TCP flags. Statistical measures (minimum, maximum, mean, standard deviation)
were calculated for traffic in both directions—source to destination and vice versa—
and combined.

• Our custom NFPlugin (code available as part of the digital artifacts at [13]) managed
the expiration of TCP flows based on their natural termination. Specifically, a flow
is terminated after an ACK that follows two FIN packets and does not carry a
FIN itself. Additionally, any flow that begins with a FIN or RST packet is also
terminated, diverging from the standard TCP three-way handshake process.

3.2.2 Temporal Characteristics

Network traffic was measured over the course of one week, specifically during the evening
hours. Each session lasted approximately 40-50 minutes, depending on the volume of traffic
captured that day. Table 3.1 details the specific measurement windows and durations for
each day, as well as the daily flow counts and the minimum, maximum, mean, and standard
deviation for flow arrival and data throughput rates.
Figure 3.6a illustrates the daily flow arrival rate per second, showing considerable variabil-
ity. Generally, the flow arrival rates averaged around 900-1000 flows per second, with a
standard deviation of approximately 250. Notable spikes in the data, with peaks exceeding
3500 flows per second, indicate periods of intense activity or bursts of flow arrivals. While
the rate frequently remained below 1500 flows per second between these peaks, lower burst
arrival rates were observed on Wednesday and Friday, though the average rates were con-
sistent with other days. This pattern suggests intermittent periods of heightened activity
amid generally steadier or lower rates of flow arrivals. Factors contributing to these fluc-
tuations could include typical network usage patterns, scheduled events such as database
updates, or anomalies within the monitored network. These peaks may highlight potential
instances of SD.
Figure 3.6b illustrates the data transfer rates observed during the measurement period.
Generally, rates were relatively low, often remaining below 5,000 MiBps. However, no-
table exceptions include spikes that exceeded 30,000 MiBps, particularly around 19:50
on Thursday and again at the same time the following day, suggesting a common cause.
These spikes were abrupt and short-lived, indicating brief periods of very high data trans-
fer activity before returning to the baseline level. On average, data rates varied between
200-300 MiBps, with a standard deviation ranging from 1400 to 2400 MiBps. The dis-
tribution and magnitude of these spikes suggest irregular and potentially unpredictable
bursts in data transmission, possibly due to activities such as scheduled data transfers,
network backups, or streaming of high-definition media.
Further analysis in Figure 3.6c reveals that the significant spikes around 19:50 on both
Thursday and Friday predominantly correspond to inbound traffic, with negligible out-
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(a) Flow arrival rate [ 1
s ].
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(b) Data rate [MiBps].
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(c) Directional data rate [MiBps]. Green: upload (outbound) data Rate. Red: download (inbound)
data rate

Figure 3.6: Daily distribution of temporal features during the
week.

bound traffic. This pattern of high download activity with minimal uploads was consistent
across all notable spikes, hinting at a heavy inbound data flow.
Interestingly, the flow arrival rate and the data rate do not appear closely correlated.
While both metrics experience spikes, they occur at different times; the data rate peaks
when the flow arrival rate is at normal levels and vice versa. This divergence could indicate
scenarios where a high volume of transferred bytes accompanies a relatively low number
of flows, potentially suggestive of an attack scenario.
Figure 3.7 presents the Empirical Cumulative Distribution Function (ECDF) plots for
three key flow features: packet count, flow size (in bytes), and flow duration (in millisec-
onds). The packet count plot reveals that over 90% of flows consist of fewer than 100
packets, predominantly resulting in shorter flows. Notably, more than a quarter of all
flows contain just a single packet, and only a small fraction of flows extend to millions of
packets. The flow size ECDF exhibits a similar but more gradual trend; nearly 40% of
the flows transfer less than 100 bytes in total, and over 90% contain no more than 10 KB
of data. In contrast, the flow duration ECDF illustrates that while many flows are short
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Figure 3.7: ECDF plots for packet count, flow size and flow du-
ration.

in terms of packet count and size, the duration of flows increases more gradually, with the
longest flows exceeding 15 minutes.
Given my focus on analyzing delays that result in SD events in flows, particularly short
flows, specifically those with fewer than two packets (indicating no response was received
or sent), are excluded from my analysis. Additionally, flows were filtered based on the con-
fidence level [10] determined by nDPI. The confidence level, indicated by a numeric value,
reflects the certainty of the categorization; a higher number signifies greater confidence.
Specifically, Level 6—achieved through Deep Packet Inspection rather than heuristic meth-
ods such as port-based approaches or correlations based on previous sessions—denotes the
highest confidence and was the threshold for retaining data in this study. After applying
these filters, approximately 40% of the flows from Monday to Thursday and 32% of Fri-
day’s traffic were retained for further analysis. The counts of flows retained post-filtering
are detailed in Table 3.1.

3.2.3 Feature Characteristics

In addition to temporal features, I analyzed the distribution of various categorical and
numerical attributes, as shown in Figure 3.8. An examination of traffic directionality
(Figure 3.8a) reveals that the overwhelming majority of flows originated from within the
LAN and were directed towards WAN, with these non-reversed flows outnumbering re-
versed flows by an order of magnitude. Daily analyses show that while the volume of
reversed flows remained constant throughout the week, non-reversed flows varied signifi-
cantly. Closer inspection of the reversed flows indicated that they predominantly consisted
of TLS and RDP traffic directed towards a specific host, characterized by highly consistent
packet order and sizes. Notably, the majority of these reversed flows originated from a
single external host, potentially representing deliberate connections to an open RDP port,
though they may also reflect typical Internet background noise.
Figure 3.8b demonstrates that while the location with the highest traffic cardinality varied
daily, 12A, 22A, 23, and 32 consistently reported high traffic volumes throughout the week.
Here, the encoding convention follows a specific pattern: the first number represents the
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Figure 3.8: Cardinality distribution of dataset features.

location, the second denotes the building, and the last letter signifies the block, as outlined
in Figure 3.5. For instance, 12A corresponds to Location 1 -Building 2 -Block A, while 32
corresponds to Location 3 -Building 2. There was also a notable amount of traffic from
locationally non-assigned sources. Conversely, 11C consistently recorded the lowest traffic,
with only a few thousand flows each day.
When traffic is grouped by location (Figure 3.8c), Location 2 emerges as the predominant
source of flows, generating over 500,000 flows daily and exceeding 3 million flows in total
for the week. Given that Location 2 houses the largest number of buildings and students,
such high traffic volumes are expected. The data shows that traffic from Location 2
consistently surpassed that from all other locations combined throughout the week.
In my examination of the application category cardinality within the captured traffic, sig-
nificant variances were observed. For instance, categories such as Web consistently showed
high activity levels, with data points exceeding 500,000 daily and peaking at 800,000 on
two occasions. In stark contrast, categories like IoT-Scada, Shopping, and Mining regis-
tered exceedingly low activity, with fewer than 50 data points each. Intermediate levels of
activity were noted in other categories, ranging from several thousand to tens of thousands
of data points. Figure 3.8d illustrates the cumulative distribution of application category
cardinalities across the dataset. Additionally, the application names were also analyzed,
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providing a more granular view of the types of flows present, which could be pivotal for
more detailed investigations.
Figure 3.8e presents the distribution of flow expiration types. Predominantly, flows were
terminated through natural TCP expiration (indicated by -1 on the plot), which involves
the standard FIN-ACK sequence in TCP connection terminations. Approximately 200,000
flows daily expired due to idle timeout (marked by 0 on the plot), occurring when no
packets were received after two minutes of inactivity. Active timeout, which forcibly ends
flows after 30 minutes regardless of activity, was a rare occurrence, affecting only a few
thousand flows each day (indicated by 1 on the plot).
Finally, the distribution of connection types, as detailed in Figure 3.8f, reveals that the
majority of traffic originated from wired connections, accounting for over 4 million flows.
Notably, around 500,000 flows were initiated by devices recognized as wireless, while a
substantial number of flows lacked specific connection type information.

3.2.4 Dataset Availability

In the spirit of fostering reproducibility and encouraging open scientific collaboration, this
dataset is made publicly available [13].
To comply with GDPR, IP addresses and MAC addresses, which could be used to identify
specific students, were anonymized using the blake2b algorithm [28]. Nonetheless, original
IP range data was retained to annotate each flow with its location within the dormitory
network. This setup not only preserves privacy but also provides crucial contextual infor-
mation about the flow origins and destinations. Additionally, I distinguished whether the
traffic was initiated by LAN hosts or directed towards the LAN, and identified whether
the traffic originated wirelessly or via a wired connection, using the applicable addressing
policy. This detailed dataset facilitates a deeper understanding of network dynamics and
supports robust analysis of SD and other network issues.
Furthermore, to aid in the transparency and reproducibility of my research, I am also
sharing the Jupyter Notebook file [13] used for analyzing the dataset. By providing these
resources, I aim to support ongoing research in network flow analysis and contribute to
the broader advancement of knowledge in this field.

17



Chapter 4

Unveiling Latency-Induced Service
Degradation

This chapter explores the concept of SD on the data collected in Chapter 3, focusing on the
extraction of true delays from the data and the analysis of this and other characteristics
for SD identification. Source material used in the analysis including the source codes and
the dataset complete with SD events are available as digital artifacts at [13] and [12].
Section 4.1 introduces foundational principles relevant to my approach, including the man-
ifestation of SD, latency considerations, analysis of LAN and WAN segments, and the use
of PIAT as the key metric, along with my data filtering strategies. Section 4.2 delves
into my methodological approach, leveraging IQR and Z-Score methods to detect both
singular and prolonged SD events. Section 4.3 explores the robustness and applicability of
my methods across various settings. The chapter concludes with Section 4.4, summarizing
my findings and their implications for network service management.

4.1 Foundational Concepts and Preparatory Considerations

4.1.1 Service Degradation in Networks

Service degradation, at its core, is the deterioration of network performance over time [6].
While seemingly straightforward, this deterioration manifests in varied ways, from inter-
mittent connectivity drops to prolonged periods of sub-optimal throughput. The user’s
experience, thus, shifts from a seamless digital interaction to one fraught with delays,
interruptions, and inefficiencies.

4.1.1.1 Causes of Service Degradation

Several factors are known to precipitate service degradation:

• Network Congestion: The most common culprit, congestion occurs when the
demand surpasses the available bandwidth. This mismatch often results in packet
loss, latency, and reduced throughput [18].

• Hardware Failures: Networks rely on a plethora of hardware components. Fail-
ures, be it due to wear and tear, manufacturing defects, or external factors, can
degrade service.
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• Software Glitches: Firmware or software running on network devices can have
bugs or can be inefficiently optimized, affecting network performance.

• External Interference: Particularly in wireless networks, external sources like
other electronic devices or even neighboring Wi-Fi networks can lead to interfer-
ence [31], reducing signal quality and overall network performance.

• Malicious Attacks: Denial of Service (DoS) attacks or other forms of cyberattacks
can overwhelm network resources, causing severe degradation.

4.1.1.2 Manifestations of Service Degradation

How the aforementioned factors manifest in network traffic can vary, but common indica-
tors include [5, 11]:

• Increased Latency: Often the first sign of degradation, latency refers to the delay
in data transfer. Applications sensitive to delays, such as video calls or online games,
are particularly affected.

• Packet Loss: Data travels in packets, and during degradation, some packets might
not reach their destination. This loss can result in visible artifacts in video streams,
glitches in audio calls, or even failed data transfers.

• Reduced Throughput: The speed at which data is transferred drops. This mani-
fests as slower download or upload speeds and extended loading times for web pages.

• Jitter: Variability in latency can cause jitter. In real-time applications, like VoIP
calls, jitter can cause voice disruptions or out-of-sequence packets, leading to poor
call quality.

• Connection Drops: In extreme cases, devices might lose their network connection
entirely or face frequent disconnections.

4.1.1.3 Impacts of Service Degradation

The ramifications of service degradation are multifaceted. For end-users, this means a
diminished experience — videos buffer, calls drop, and websites load at glacial paces [18].
For service providers, degradation can lead to customer dissatisfaction, churn, and even fi-
nancial losses in extreme cases. However, it is important to note, that different application
types may have different thresholds for SD. While a flow that carries data for a live service
may experience SD as soon as network conditions deteriorate slightly, other application
types, like emails could be completely or mostly immune to deteriorated conditions. This
underscores the necessity for an application-aware approach for SD identification.

4.1.2 The Latency-Service Degradation Nexus

4.1.2.1 Latency

In today’s digital landscape, where online services from entertainment streaming to busi-
ness conferencing are pervasive, understanding network performance is crucial. Latency
stands as a primary metric for assessing this performance and is defined mathematically
as:
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Latency (L) = Time (T2) − Time (T1). (4.1)

Here:

• T1 represents the time when an action or request is initiated.

• T2 is the time when a response is received.

Latency significantly affects user experience quality, with even slight increases potentially
leading to noticeable SD. I represent SD (∆S) as a function of increased latency (∆L):

∆S = f(∆L). (4.2)

Here, f denotes the function that quantifies how service quality diminishes as latency
increases. This present research aims to precisely identify this function while exploring
other contributing variables.

4.1.2.2 Jitter

Besides latency, it is also beneficial to consider latency variability, or jitter, which is defined
as the difference in latency measurements over successive intervals:

Jitter (J) = Latency (L2) − Latency (L1), (4.3)

where:

• L1 is the latency measured at an earlier time point.

• L2 is the latency measured at a subsequent time point.

The occurrence of high latency and jitter together may indicate more severe instances of
SD. Therefore, examining both metrics is essential in my efforts to identify SD events.

4.1.2.3 Packet Inter-Arrival Time

PIAT quantifies the time interval between the arrivals of two consecutive packets within a
network flow at the flow meter. For a sequence of packet arrival times t1, t2, . . . , tn, PIAT
for the i-th packet is mathematically defined as:

PIATi = ti − ti−1

for i > 1, with PIAT1 = 0 indicating no preceding packet for the first in the sequence.
PIAT is crucial in network analysis, serving various purposes from traffic characterization
to behavior analysis. Its utility stems from providing detailed insights into traffic pat-
terns and assisting in the detection of anomalies or disruptions within network flows. In
this study, PIAT is instrumental due to its granularity and effectiveness in environments
where monitoring resources may be limited. By leveraging PIAT, I aim to enhance the
understanding of network dynamics and improve the precision of SD detection, making it
an essential tool in my analysis methodology.
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Figure 4.1: Visual representation of network traffic flow showing
the vertical separation between WAN and LAN delays.

4.1.3 Vertical Separation of Delays

From the vantage point of a network edge, which serves as the observation point in this
study, network flows network flow packets can be distinctly categorized into two primary
directions: towards the LAN and towards the WAN. In the context of latencies determined
via PIATs, a vertical separation of delays is essential for effective traffic monitoring and
precise analysis of key metrics.
Isolating LAN-side delays is particularly important because external factors on the WAN
side, which are beyond the network provider’s control, can significantly influence the anal-
ysis results. Understanding local network conditions accurately necessitates focusing on
LAN-specific metrics, as WAN-side delays introduce variability that can obscure the true
performance of the residential network.
Figure 4.1 illustrates this concept clearly. The diagram shows the division of the bidi-
rectional packet transfer within a flow, with PIATs measured in the WAN highlighted in
orange with a crosshatch pattern to represent delays and interactions that occur outside
the immediate control of the local network. Conversely, LAN PIAT components are de-
picted in blue, showcasing the internal network dynamics. Arrows in the figure indicate
the direction of packet traffic, moving between LAN and WAN endpoints, providing a
visual representation of data traversal across these network segments.

4.1.4 Leveraging PIAT for Latency Estimation

In my methodology, I utilize PIAT, measured in milliseconds, as a key metric for discerning
network latency. PIAT values, along with packet direction and size measured in bytes, are
captured as part of the Sub-Packet-Length-Time (SPLT) features measured by NFStream.
These three features provide packet-level insights for the first n packets of each flow. For
my study, I have set the recording of SPLT features to the maximum supported value of
255.
Traffic often appears as a burst of multiple packets; therefore, my analysis focuses on
the time interval between the arrival of the last packet in such a burst (in the incoming
direction) and the first outgoing packet that responds to this burst within the same flow.
In Figure 4.1, instances meeting these conditions are highlighted with a filling pattern
diagonal from the bottom left to the top right and with a thicker border.
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Algorithm 1 Identifying LAN Delay
1: procedure id_lan_delay(dir, prev_dir, reversed)
2: if reversed then
3: ▷ dir: dst2src (LAN2WAN),

prev_dir: src2dst (WAN2LAN) ◁
4: return dir = 0 and prev_dir = 1
5: ▷ dir: src2dst (LAN2WAN),

prev_dir: dst2src (WAN2LAN) ◁
6: return dir = 1 and prev_dir = 0

Algorithm 2 Vertical Separation of Flows
1: procedure vert_sep(splt_dir, splt_piat)
2: D ← []
3: prev_dir ← −1
4: for idx, dir in enumerate(splt_dir) do
5: if idx = 0 then
6: prev_dir ← dir
7: else
8: ▷ Examining the dir and prev_dir I only take into account the response to the last packet in the

case of a burst ◁
9: if id_lan_delay(dir, prev_dir, reversed) then

10: D ← D + splt_piat[idx]
11: prev_dir ← dir
12: return D

I operate under the assumption that delays caused by local endpoints are negligible com-
pared to those induced by broader network conditions. By selectively analyzing TCP
flows, I ensure the PIAT values used reflect the time difference between the receipt of
the last packet from the WAN side and the transmission of the corresponding TCP ac-
knowledgment. This duration is indicative of the time traffic spends within the local
network, effectively representing LAN-side latency. This latency is measured by analyzing
the packet inter-arrival times of closely succeeding outgoing and incoming packets.
Algorithms 1 and 2 illustrate the steps involved in extracting PIAT values that pertain
to LAN-side delays. While a similar analysis could also be conducted for LAN-to-WAN
traffic, my focus remains on the LAN side due to its potential to provide detailed insights
with fewer privacy concerns within a controlled monitoring environment. Understanding
these internal dynamics lays a foundation for future methodologies that could extend to
monitoring WAN-side behaviors.
The identification of LAN-side delays significantly narrows down the set of PIAT values
compared to the original dataset. I discard flows with fewer than two LAN-side delays
from further analysis because they either lack sufficient LAN-side delays to calculate jitter
or cannot define a SD event. This filtering step results in a dataset that only includes
flows with at least two LAN-side delays, as shown in Table 3.1.
Upon analyzing the temporal characteristics of this filtered dataset, I observed a notable
decrease in flow arrival rates—from an average of approximately 1000 flows per second
to around 400 flows per second—along with a more consistent distribution over time.
Although some spikes in arrival rate persist, the overall data rate has slightly decreased,
maintaining similar patterns to those observed prior to filtering. The proportion of flows
with very few packets also decreased significantly; initially, almost 40% of flows contained
only one packet, whereas now, only 20% contain fewer than ten packets. Similarly, the flow
size has become more consolidated, with only 20% of flows containing less than 1 KB of
data, down from 60% before filtering. Flow duration patterns also show fewer short-lived
flows, with less than 5% lasting under 10 milliseconds compared to over 40% previously.
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Figure 4.2: SPLT Coverage of the flow. Figure 4.3: LAN delay coverage of the
flow.

Despite these reductions, the overall pattern of the ECDF plots remains unchanged, sug-
gesting that the main characteristics of the data were retained despite the narrower dataset
scope.

4.1.5 Reduced Data View Coverage

A reduction in dataset size can undeniably impact the quality of data used for SD analysis.
To validate the integrity of my filtered dataset and ensure that it remains representative
of overall network behavior, I assess its coverage. High coverage would indicate that the
majority of flows are captured within the initial scope of 255 packets of flows, an essential
criterion given my reliance on SPLT values for PIAT-based latency analysis.
Figure 4.2 shows that a significant majority of the flows are fully encompassed within the
initial SPLT values corresponding to the first 255 packets. Nevertheless, a few thousand
longer flows exceed this packet limit, indicating partial coverage. Despite this, such par-
tially covered flows constitute less than 5% of the total. Conversely, approximately 30% of
flows are partially covered, while the vast majority either enjoy full coverage or are nearly
fully covered.
Another metric to consider is the ratio of LAN delay durations to the remaining WAN
delays in the measured flows, as illustrated in Figure 4.3. The analysis reveals that LAN
delays are generally less prevalent than WAN delays, with some flows exhibiting signifi-
cantly higher proportions of LAN delays. For 40% of the flows, LAN delays contribute
almost nothing to their overall duration, indicating minimal LAN-side delays.
This analysis reassures us that, despite the dataset reduction, the primary characteristics
and a substantial portion of the network dynamics are retained and adequately represented
within the adjusted scope of this study.

4.2 Methodology for Identifying Service Degradation

In this section, I investigate the occurrence of SD events within the dataset, initially
focusing on data from the most populous Location 2 and limiting my analysis to the
first three days to serve as a quasi-training set. This phase helps establish thresholds for
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Table 4.1: Count of LAN delays per Application Category for Location 2

Application Category Name LAN Delay Count

Web 9,016,470
Social Network 1,797,216
Cloud 1,177,916
Collaborative 743,453
Download 440,421
Network 264,156

Count of all delay samples 13,439,632

classifying SD events based on Interquartile Range (IQR) and Z-score analyses, which are
detailed later.
I define SD as a statistically significant deviation from typical flow latency behavior, char-
acterized by notable increases in latency and jitter. The thresholds for identifying these
deviations are tailored to the specific requirements of different application categories. For
instance, even minimal increases in latency might constitute SD in delay-sensitive applica-
tions like voice calls or remote desktop interactions, where timing is critical. Conversely,
for activities such as downloading, where latency sensitivity is lower, an increase in delay
may not be as perceptible.
Additionally, I explore prolonged SD events, defined as extended periods where deviations
in latency and jitter persist. An SD event in this context is identified as a contiguous
series of delays, starting with an initial outlier in jitter followed by subsequent delays that
also qualify as outliers. This approach seeks to capture sequences where delays not only
spike unexpectedly but also remain elevated above the established anomaly threshold. I
further examine scenarios where, despite significant and sustained increases in delays, the
flow continues to exhibit high jitter, maintaining levels above the SD threshold.
To ensure robustness and mitigate risks such as overfitting or unreliable threshold estima-
tions, my analysis prioritizes application categories with sufficient data volume. Specifi-
cally, I focus on categories that have recorded at least 50,000 flows at Location 2. This
criterion coincidentally aligns with the top six application categories in the entire dataset,
which include: Web, Social Network, Download, Cloud, Network, and Collaborative.
Table 4.1 presents the LAN delay counts following this selection step. Notably, Web traffic
constitutes the majority of the data, overshadowing the other categories. However, the
remaining categories still provide a substantial number of samples, adequate for conducting
reliable statistical analysis.

4.2.1 Interquartile Range Analysis

To evaluate the distribution of delays across various application categories, I utilized box-
plots, as depicted in Figure 4.4. To enhance visibility of differences across distributions,
the y-axis is set to a logarithmic scale. The boxplots are ordered in descending sequence
based on the volume of delay samples, and mean values are denoted by orange rectangles
on each plot.
The analysis reveals distinct distribution patterns within the application categories, cate-
gorizing them into two groups based on delay characteristics. Categories such as Download
and Network typically show delays not exceeding 10 milliseconds, while others like Cloud
often exceed 100 milliseconds at their upper whisker, with delays extending into the tens
of milliseconds range. Notably, Cloud, Download, and Network also display delays in the

24



Figure 4.4: Distribution of LAN delay and jitter per application
category.

sub-millisecond range, with medians set at 1 millisecond. Due to limitations in NFStream’s
measurement capabilities, delays under one millisecond are recorded as 0 milliseconds. The
mean delays for Download and Network are notably below one second, which is signifi-
cantly lower compared to other categories where means reach several seconds, largely due
to the presence of outliers as determined by Interquartile Range Analysis (IQR) analysis.
Jitter distribution aligns closely with the observed delay patterns across all categories,
with each showing a median jitter that matches or is lower than the median delay. The
first quartile frequently registers at 0 milliseconds, indicating a significant occurrence of
consistent delays (no jitter). Contrarily, Social Network flows display slightly longer jitters
compared to delays, especially evident in the third quartile, upper whisker, and mean
values.
Outliers, critical for identifying SD events, are evident across all categories and range from
a few milliseconds to over 100 seconds. Detailed quantification of these outliers, including
their impact on service quality, is presented in Table 4.2.

Table 4.2: Outlier Statistics for Location 2

Metric Quartile Analysis Z-score Analysis

Number of delay outliers 1,680,245 499,656
Number of jitter outliers 2,682,895 374,765
Number of intersection outliers 1,156,820 194,233
Total rate of delay outliers 12.502% 3.718%
Total rate of jitter outliers 19.963% 2.789%
Total rate of intersection outliers 8.608% 1.445%
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Table 4.3: Mean and Standard Deviation Values for Each Application Category

M
et

ri
c

W
eb

So
ci

al
N

et
w

or
k

C
lo

ud

C
ol

la
b

or
at

iv
e

D
ow

nl
oa

d

N
et

w
or

k

µdelay 2,566.86 1,559.44 1,298.99 2,403.65 294.11 592.49
σdelay 10,027.89 8,011.10 7,358.91 9,668.43 2,887.64 4,166.06

µjitter 1,893.55 2,424.25 1,277.34 1,921,77 265,79 551.51
σjitter 8,464.72 9,751.16 7,279.63 8,560.04 2,389.94 4,588.31

4.2.2 Z-Score Analysis

Next, I utilize Z-score analysis to detect outliers in my dataset, particularly focusing on
unusually large delays indicative of SD. Positive Z-scores, which signify values above the
mean, are of particular interest as they represent potential SD events. I adopt standard
thresholds, considering Z-scores greater than 2 or 3 as significant, with the specific thresh-
old dependent on the application category’s sensitivity to delays.
Figure 4.4 presents delay and jitter means marked with orange diamonds and their cor-
responding Z-scores depicted by horizontal lines for all studied application categories at
Z = 1, Z = 2, and Z = 3. These illustrate the degree to which specific measures devi-
ate from the mean in standard deviation increments. The mean and standard deviation
values crucial for these calculations are detailed in Table 4.3, highlighting that Z-scores
typically mirror the distribution of mean values. For example, more sensitive categories
such as Web, Social Network, Cloud, and Collaborative have Z-score thresholds with Z = 3
extending beyond 20 seconds. Conversely, the Download category’s threshold is just under
10 seconds, while Network exceeds this slightly in both delay and jitter.
Figure 4.4 clearly demonstrates the stringent nature of Z-score analysis compared to IQR
analysis. While IQR may flag a higher number of singular delay SD events (marked with
black circles as outliers beyond the whiskers) due to its sensitivity to the lower limit,
Z-score analysis bases its findings on deviations from the mean delay values, which are
generally higher. Consequently, Z-score analysis results in fewer identified outliers. As
shown in Table 4.2 for Z = 3, events exceeding this Z-score threshold are considered
significant. In line with standard practices in anomaly detection, I adopt Z = 3 as the
threshold for my Z-score analysis.

4.2.3 Examining Prolonged SD Events

SD events may manifest not only as singular delay and/or jitter outliers but also as
prolonged sequences of consecutive outliers. To identify these sequences, I have developed
an algorithm, outlined in Algorithm 3, that groups contiguous delays into a single SD
event if all delays are recognized as outliers for a period defined by Minimum Sequence
Length (MIN_SEQ_LEN), with an optional consideration for jitters. The algorithm operates
as follows:

(i) It iterates through all delay samples in a flow.

(ii) If the jitter and delays are high (previously identified as singular SD points), it
initiates an SD sequence.
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Algorithm 3 Identifying LAN Delay
1: procedure find_SD_sequences(SDd_list, SDj_list, MIN_SEQ_LEN, require_jitter_for_sequence)
2: for i, (SDd, SDj) in enumerate(zip(SDd_list, SDj_list)) do
3: if require_jitter_for_sequence then
4: seq_condition ← SDd and SDj
5: else
6: seq_condition ← SDd
7: if (sequence_length = 0 and SDj and SDd) or (sequence_length > 0 and seq_condition) then
8: sequence_length ← sequence_length + 1
9: else

10: if sequence_length ≥ MIN_SEQ_LEN then
11: start ← i - sequence_length
12: end ← i
13: sequences.append((start, end))
14: seq_SD_list[start: end] ← [True] * (end - start)
15: if sequence_length > 0 then:
16: sequence_length ← 0
17: ▷ If the last sequence goes until the end ◁
18: if sequence_length ≥ MIN_SEQ_LEN then
19: start ← len(SDd_list) - sequence_length
20: end ← len(SDd_list)
21: sequences.append((start, end))
22: seq_SD_list[start: end] ← [True] * (end - start)
23: return [sequences, seq_SD_list]

(iii) The SD sequence continues as long as the delays (SDd) remain high, and optionally, if
require_jitter _for_sequence is enabled, the jitter (SDj) must also remain high.

(iv) The sequence concludes when the traffic returns to normal, capturing the start and
end indexes of the corresponding LAN delays marking the SD event.

Table 4.4: SD Event Count and Coverage Statistics for Different Minimum Sequence
Lengths with require_jitter_for_sequence option turned OFF
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1 477,758 33 126,702 24 120,813 46 21,033 28 27,830 21 7,304 16 16,658 49 1,705 19 36,110 39 17,491 32 146,444 34 19,599 18

2 128,183 25 54,624 18 29,485 34 6,281 14 5,113 10 116 5 5,523 43 240 8 12,905 27 5,170 20 24,339 12 1,933 5

3 77,573 22 42,125 17 12,630 23 745 4 1,724 7 63 4 2,848 35 174 7 6,901 20 2,318 15 11,224 9 1,330 5

4 60,582 21 37,374 16 6,302 17 541 3 870 6 45 4 1,978 31 125 6 5,351 18 2050 14 5,664 7 1084 4

5 47,025 18 29,675 14 3,723 14 309 2 593 5 41 4 1,505 29 94 4 4,422 17 1,874 13 3,604 6 963 4

6 - - 13,404 9 - - 156 2 - - 27 3 - - 43 2 - - 1,667 12 - - 730 4

7 - - 10,924 8 - - 128 2 - - 27 3 - - 41 2 - - 1,576 12 - - 561 3

8 - - 6,665 6 - - 116 2 - - 26 3 - - 23 1 - - 219 2 - - 538 3

9 - - 5,704 5 - - 113 2 - - 22 3 - - 17 1 - - 141 2 - - 514 3

10 10,465 8 5,290 5 1,097 10 109 1 255 4 22 3 686 19 17 1 805 5 131 2 763 3 485 3

15 3,881 5 - - 614 8 - - 146 3 - - 156 6 - - 229 3 - - 63 0 - -

20 2,033 3 - - 468 7 - - 99 3 - - 70 3 - - 153 2 - - 20 0 - -

25 1,603 3 - - 402 6 - - 70 2 - - 46 1 - - 117 2 - - 10 0 - -

Figure 4.5 illustrates an example of an SD event for an application category requiring a
minimum sequence length (MIN_SEQ_LEN) of 2. While an earlier LAN delay may also be
an outlier, the absence of sufficient jitter and a subsequent outlier disqualifies it as an
independent SD event.
This methodology allows us to assess SD events across all application categories, utiliz-
ing outliers identified by both IQR and Z-score analyses. I explore variations with the
require_jitter_for_sequence option both enabled and disabled. Tables 4.4 and 4.5
present the counts of SD events and the percentage of total SD event time relative to
the entire duration of the flow for each category. Only sequences meeting or exceeding
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Table 4.5: SD Event Count and Coverage Statistics for Different Minimum Sequence
Lengths with require_jitter_for_sequence option turned ON
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1 506,144 17 126,757 9 126,392 27 21,034 20 28,619 20 7,312 12 18,664 40 1,709 13 37,910 22 17,495 17 149,818 28 19,607 13

2 74,708 6 139 0 19,636 11 1 0 4,663 9 10 0 5,956 32 28 0 7,922 5 3 0 19,629 5 99 0

3 26,105 3 33 0 6,259 5 0 0 1,300 6 1 0 2,786 22 0 0 3,925 1 1 0 6,423 2 3 0
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5 10,053 2 0 0 1,351 1 0 0 414 4 0 0 1,019 12 0 0 2,072 1 0 0 1,178 1 0 0

10 2,437 2 - - 138 0 - - 159 4 - - 189 4 - - 325 0 - - 64 0 - -

15 1,211 2 - - 29 0 - - 89 2 - - 40 2 - - 23 0 - - 5 0 - -

20 865 2 - - 13 0 - - 64 2 - - 13 0 - - 4 0 - - 1 0 - -

25 774 1 - - 7 0 - - 33 1 - - 6 0 - - 0 0 - - 0 0 - -

Figure 4.5: A sample SD event when MIN_SEQ_LEN = 2 and
require_jitter_for_sequence = False

the stipulated minimum length are considered in the final count of SD events. Longer
sequences, even though they extend beyond this threshold, are counted as a single event.
I observe a decreasing trend in the number of SD events and their duration coverage as the
minimum sequence length (MIN_SEQ_LEN) requirement is increased. Notably, with Z-score
analysis, the initial count and coverage of SD events are significantly lower compared
to those identified through IQR analysis. A similar pattern of counts and coverages is
reached by MIN_SEQ_LEN = 3 for most categories, except for the Web category, which
shows a consistent pattern with IQR analysis, indicating more prolonged and extreme SD
events in this category that are detectable by both methods.
The reduction in SD events is neither linear nor uniform across different application cate-
gories and the two outlier identification methods. IQR analysis generally shows a steadier
decrease in SD events, whereas Z-score analysis often experiences abrupt declines in SD
event counts and coverage, which then stabilizes. This behavior varies by application
category at different MIN_SEQ_LEN values—Download, Network, and Social Network at 2;
Cloud at 3; Collaborative at 8. Interestingly, the Web category does not exhibit such a
drastic drop, suggesting a characteristic resilience in the length of its SD events.
Additionally, when examining SD events identified by delay-jitter outliers compared to
those identified by delay outliers alone, I observe similar patterns. At MIN_SEQ_LEN = 1,
the number of SD events is slightly higher, attributed to shorter but more frequent se-
quences disrupted by periods of low jitter, leading to a decrease in overall SD coverage.
As the required sequence length increases, the count of SD events sharply declines, ne-
cessitating longer sequences for classification as an SD event. With IQR analysis, by
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Table 4.6: Minimum Sequence Lengths for SD Event Identification per Application
Category

Application Category MIN_SEQ_LEN

Web 6
Cloud 3
Download 2
Network 2
Collaborative 8
Social Network 2

Figure 4.6: Distribution of the delay composition of SD events.

MIN_SEQ_LEN = 10, I observe coverage levels previously seen only at lengths of 25, with
most categories falling below 5% except for Network, which maintains over 10% coverage.
Conversely, for Z-score analysis incorporating jitter requirements, no SD sequences are
identified in any category beyond MIN_SEQ_LEN = 5. Indeed, by MIN_SEQ_LEN = 4, only
one SD event remains, and even at lengths of 2 and 3, only a handful of SD events are
present. This suggests that a dual requirement for high delay and high jitter may be overly
restrictive for identifying SD events in this context.
I have made the code for the detailed analysis discussed in this section, including a com-
prehensive set of plots, available as digital artifacts [13].

4.2.4 Outlier Thresholds for Reliable SD Detection

For setting the outlier identification threshold, I opt for the Z-Score method, which pro-
vides a more conservative estimate, resulting in lower false positive rates. To determine
the Minimum Sequence Length for SD events, I adopt an empirical approach, selecting a
unique sequence length for each application category that reduces the SD coverage rate
to below 10%. These thresholds are highlighted in Table 4.4 in red, indicating the first
instance where coverage percentages drop below this critical threshold. The specific values
for each category are summarized in Table 4.6, aiming to further minimize false positive
SD events.
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Figure 4.7: Distribution of number of SD events across flows.

These sequence lengths correlate with the noticeable declines in SD coverage discussed
earlier in Section 4.2.3. The selected LAN delays for these thresholds are depicted in
Figure 4.6, which contrasts the LAN delay points identified in each application category
by the most stringent IQR analysis (requiring a minimum of 25 consecutive high LAN
delay and jitter) against those identified by the chosen Z-score method. This comparison
illustrates that while IQR analysis tends to identify many comparatively minor delays as
part of prolonged SD events, Z-Score analysis selectively identifies more extreme values
by default, emphasizing its stricter criteria.

4.2.5 Effectiveness of Z-Score Analysis in Identifying SD Events

In this section, I analyze various statistics of the SD events identified using the chosen
Z-score method. Figure 4.7 presents the distribution of SD event counts across flows.
The y-axis, represented on a logarithmic scale, indicates the number of flows, while the
x-axis shows the number of SD events, ranging from 0 to over 14. The majority of flows
either have no SD events or only a few, with an ECDF plot revealing that approximately
99% of flows contain at most one SD event, making multiple events within a single flow
exceedingly rare.
Table 4.7 details the number of flows, number of SD events, and the number of flows with
at least one SD event across all application categories, alongside the proportion of flows
with SD events relative to the total number of flows. Consistent with Figure 4.7, only
a small fraction of flows contain multiple SD events, as indicated by the slight difference
between Total SD Events and Flows with SD. The proportion of flows experiencing SD
remains below 1% for all categories, marginally exceeding this threshold only in the Web
category, which accounts for the majority of identified SD events.
Figure 4.8 illustrates the temporal distribution of SD events, with the x-axis displaying
time in milliseconds and the y-axis depicting the number of SD events at each time point.
This plot aims to determine whether SD events are evenly distributed over time or if
certain periods contain higher concentrations of events. Notable spikes and valleys in
the data suggest moments where SD event counts were significantly higher or lower, with
Monday showing frequent fluctuations, but the most intense activity observed on Wednes-
day just before the measurement period concluded. This could indicate a specific time
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Table 4.7: Distribution of SD Events Across Application Categories

Total SD Events Flows with SD Proportion with SD

Web 13,404 12,450 1.2434%
Social Network 1,933 1,746 0.8620%
Cloud 745 653 0.3844%
Collaborative 219 215 0.2925%
Download 240 208 0.2715%
Network 116 116 0.1062%
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Figure 4.8: Distribution of number of SD events across flows.

when network disturbances were more pronounced, affecting multiple flows. Additionally,
a common trend on all days is a marked decrease in SD events towards the end of the
measurement period, possibly reflecting characteristics of the measurement timeframe or
the impact of the measurement process itself, such as truncating ongoing flows.

4.3 Generalizability

With the insights gained from my analysis at Location 2, in this section, I extend the Z-
score analysis for SD identification to Location 1 and Location 3. This extension aims to
examine the consistency of delay characteristics and SD events across different locations,
thereby assessing the generalizability of my approach. For each location, I calculate Z-
scores for delay and jitter across all samples, identifying outliers where Z > 3. Following
the established methodology from Location 2, I search for sequences of SD events initiated
by outliers in delay and jitter, where high delay behavior persists. I then determine
the smallest MIN_SEQ_LEN that reduces the coverage of these events below 10% for each
category, comparing these values with those derived from Location 2. The findings and
their implications for generalizability are detailed in Section 4.3.1.
To validate my approach, I apply the same analytical steps to the remaining holdout
portion of the dataset, which includes flow data from the last two days of the experiment
(Thursday and Friday). These days were chosen because they exhibited similar flow-arrival
rates and data rates as observed previously (see Section 3.2.2). By analyzing the outcomes,
I aim to confirm the consistency of the observed patterns and validate the applicability of
my defined methodology during these periods. The results of this validation process are
explored in Section 4.3.2.
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4.3.1 Cross-Location Validation of Service Degradation
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Figure 4.9: Application category cardinality for all locations.

Table 4.8: Count of LAN delays per Application Category for All Locations

Application Category Name Location 1 Location 2 Location 3

Web 3,453,780 9,016,470 2,017,416
Social Network 490,886 1,797,216 555,845
Cloud 330,038 1,177,916 197,503
Collaborative 256,976 743,453 109,425
Download 143,806 440,421 110,501
Network 109,343 264,156 38,057

Count of all delay samples 4,784,829 13,439,632 3,028,747

To ensure consistency in my analysis, I continue to focus on the same application categories
as those analyzed in data from Location 2. Figure 4.9 compares the flow counts across
the three locations, from which I find that only the Web and Social Network categories
at Location 1 and Location 3 meet the 50,000 flow count threshold set in my original
analysis. Lower flow counts in the other categories may influence SD event characteristics,
skewing them toward the behavior observed in fewer flow records, which may not be
as representative as those derived from higher flow counts. Despite these limitations, I
proceed with the analysis for all previously chosen categories—Web, Social Network, Cloud,
Network, Download, and Collaborative—keeping in mind that the results for categories
with lower sample counts may be less reliable. By examining the differences in SD event
requirements between categories with varying flow counts, I aim to assess whether the
50,000 flow threshold is justifiable or could potentially be lowered.
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(a) Location 1. (b) Location 3.

Figure 4.10: Distribution of LAN delay and jitter for Location 1
and Location 3.

Table 4.9: Mean and Standard Deviation Values for Each Application Category

(a) Location 1
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µdelay 1,945.08 1,527.17 1,475.12 2,314.52 329.43 351.44
σdelay 8,761.14 9,421.93 7,836.64 9,421.93 3,551.12 3,205.05

µjitter 1,432.03 2,314.18 1,454.34 1,885.77 323,33 303.34
σjitter 7,430.50 9,335.86 7,767.23 8,353.78 2,764.91 3,382.51

(b) Location 3
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µdelay 2,495.82 1,684.57 1,212.67 2,070.17 264.63 1,212.67
σdelay 9,888.79 8,474.79 7,777.25 9,001.14 3,203.27 6,253.60

µjitter 1,969.48 2,739.77 1,580.08 1,520.29 233,12 1,286.55
σjitter 8,673.23 10,574.94 8,197.80 7,572.17 2,683.39 6,879.52

The LAN delay counts across all application categories (see Table 4.8) exhibit similar
patterns to the flow count statistics, albeit falling short of the delay counts observed at
Location 2. Notably, Location 3 shows significantly lower counts compared to Location 1,
except for the Social Network category.
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Figure 4.10 and Table 4.9 depict the delay and jitter distributions for Location 1 and
Location 3, revealing patterns virtually identical to those at Location 2. The distributions
across application categories maintain similar relative delays, with only minor differences:
at Location 1, Web delays occasionally dip below 1 millisecond, and at Location 3, the 75th-
percentile of Network delays stay below 1 ms, with only outliers exceeding this threshold.
These observations suggest that while lower flow counts might slightly bias the results
towards lower delays, the fundamental characteristics of delay distribution are preserved,
even with significantly reduced data volumes.
Interestingly, Location 3 experiences consistently higher delay values across all categories,
with the 25th-percentile values increasing by several milliseconds, leading to a broader
distribution in jitter. This pattern could reflect the unique network traffic characteristics of
Location 3, possibly due to its more remote location compared to the other sites, which are
within the same municipality. Despite these variances, the higher percentiles, mean values,
and Z-scores show comparable characteristics, affirming the overall pattern consistency.
To delve deeper into longer SD events characterized by consecutive high delays, I replicate
the specific scenario analyzed at Location 2. In this scenario, an SD event begins with
an outlying delay and jitter (Z-score > 3), with the high delay persisting throughout the
event. I progressively increase the minimum sequence length required to qualify as an SD
event, analyzing both the number and coverage percentage of these events. The results of
this extended analysis are presented in Table 4.10.
Although the total counts of SD events decrease significantly when stricter criteria are
applied, the coverage percentages exhibit a decay pattern very similar to that observed
at Location 2, differing by only a few percentage points. Furthermore, when examining
key thresholds—specifically, points where coverage falls below 10% and where significant
drops in coverage occur—I identify the same critical sequence lengths as those previously
established in Table 4.6.
This consistency across different locations not only confirms that extreme traffic patterns
leading to SD events are comparable, if not identical, across the three locations, but
it also validates the robustness of my analytical approach. Moreover, it suggests that
this methodology can effectively be applied to application categories with significantly
lower flow counts, reinforcing the reliability and appropriateness of my chosen methods
for analyzing SD events.

4.3.2 Service Degradation Validation via Holdout Set

For my SD event analyses thus far, I have utilized data from the first three measurement
days designated as training data. To extend my validation, I leverage the data from the
last two days as testing data in a model training-testing scenario. This test data allows
us to validate the SD event identification approach I applied by comparing results across
different days, similar to my analyses across various locations. By tallying the results and
quantifying differences in thresholds and MIN_SEQ_LEN, I aim to confirm the robustness
and consistency of the methodology I used.
I have chosen not to include delay and jitter distribution plots for the test data from the
three locations in this document due to their high similarity to the training data distribu-
tions. However, to ensure transparency and facilitate further research, I provide the code
for my detailed analysis, including a comprehensive set of plots, as digital artifacts [13].
Upon examining the delay and jitter distributions in the test data, I observe highly sim-
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Table 4.10: SD Event Count and Coverage Statistics for Different Minimum Sequence
Lengths with require_jitter_for_sequence option turned OFF using the Z-Score Iden-
tification Method
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10 1,577 5 41 2 17 7 3 1 50 2 109 2
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1 27,154 24 3,774 25 825 14 529 21 1,960 32 6,293 19
2 10,213 17 894 11 30 7 68 9 695 23 501 5
3 8,005 16 113 3 15 6 60 9 382 19 376 4
4 7,072 15 90 3 11 5 51 8 329 18 313 4
5 5,667 13 62 3 10 5 37 6 309 17 266 4
6 2,804 9 41 2 9 5 7 2 278 16 201 3
7 2,202 8 38 2 9 5 6 2 246 15 132 2
8 1,374 6 36 2 8 5 5 1 58 5 124 2
9 1,164 5 35 2 8 5 1 0 46 5 120 2

10 1,037 5 33 2 8 5 1 0 43 5 117 2

ilar patterns to those in the training data, albeit with slight variations in median values.
Notable changes between the training and testing datasets for all locations include:

• Location 1 displays slightly higher Web delays paired with lower jitter, an increase
in lower-end Social Network delays, and lower delays in the Cloud, Download, and
Network categories, along with correspondingly lower jitter distributions.

• Location 2 shows virtually identical distributions with a broader spread in jitter
within the Network category.

• Location 3 retains the higher delay and jitter distribution observed during the train-
ing phase due to its geographical distance, yet maintains highly similar patterns,
with the notable exception of increased Download and Network delays and jitter.

These observations suggest that my methodology yields consistent and reliable results
across different testing conditions, further validating the soundness of my chosen analytical
approach.
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Table 4.11 illustrates the relative differences (expressed as percentages) between the mea-
sured mean and standard deviation across all locations, upon which the Z-Score method
bases its outlier detection. These differences are color-coded according to their magnitude,
with larger deviations highlighted in darker shades of red.
Examining the mean and standard deviation statistics for delay and jitter, I observe the
most significant deviation in the delay mean: a 45% decrease in the Network category at
Location 2. The most substantial change in jitter mean occurred in the Collaborative cate-
gory at Location 1, where the average jitter was over 75% higher compared to the training
data. The greatest changes in standard deviation were 31% for delay and 42% for jitter,
both observed in the Collaborative category at Location 1 and Location 3, respectively.
The Collaborative category generally exhibited the most variability in delay and jitter
changes between the training and test data, with other notable variations in the Social
Network and Cloud categories. Changes in other categories were slight or negligible.

Table 4.11: Mean and Standard Deviation for Each Application Category in the Test
Data given as a Relative Percentage Difference to Training Data
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1 µdelay (∆%) 20.92 -9.67 -19.15 33.00 -4.63 -4.49
σdelay (∆%) 9.41 -3.07 -4.55 30.94 -1.29 -0.08
µjitter (∆%) 24.28 -7.50 -27.68 78.74 -7.22 -1.49
σjitter (∆%) 10.51 -2.09 -7.17 52.98 -3.57 1.91
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2 µdelay (∆%) 7.14 44.51 14.31 -45.05 14.06 -9.12
σdelay (∆%) 2.60 19.06 -6.62 -28.88 7.06 -6.89
µjitter (∆%) -3.09 26.26 -22.06 -48.93 36.04 -8.18
σjitter (∆%) -3.16 10.53 -25.57 -29.44 16.53 -6.96
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3 µdelay (∆%) 1.62 -29.46 -8.16 20.60 -1.69 3.61
σdelay (∆%) 1.16 -16.57 -16.21 27.58 -1.43 2.80
µjitter (∆%) 2.87 -30.45 53.57 43.31 -7.71 -3.24
σjitter (∆%) 2.39 -17.53 15.90 41.87 -4.16 -0.14

These differences were fairly evenly distributed across the three locations, with Location
1 experiencing the most significant changes. When testing for the optimal minimum se-
quence length using the same parameters, the exact same thresholds as those determined
from the training data were obtained. Table 4.12 details the coverage percentages for all
three locations and all six application categories analyzed. Despite slight variations in the
exact SD event coverage percentages, the MIN_SEQ_LEN for all categories was consistent
across all locations, with the significant decrease in coverage dipping below 10% at match-
ing minimum sequence lengths. The distribution of these results was identical to that
observed in the training data (see Table 4.6), confirming the reliability and consistency of
my methodology across different datasets.

4.4 Discussion

This section explores potential limitations and assesses the validity of my findings, with
particular attention to their applicability across various domains and their implications
for the Quality of Experience (QoE) perceived by users.
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Table 4.12: SD Event Coverage Statistics (cov.%) for Different Minimum Sequence
Lengths with require_jitter_for_sequence option turned OFF using the Z-Score
method run on the test data (L1, L2 and L3 stand for Locations 1, 2 and 3 respec-
tively)

MI
N_

SE
Q_

LE
N

W
eb

C
lo

ud

D
ow

nl
oa

d

N
et

w
or

k

C
ol

la
b

or
at

iv
e

So
ci

al
N

et
w

or
k
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2 17 18 19 14 14 11 8 3 3 4 7 8 20 21 26 6 6 7
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7 8 8 7 2 2 2 6 2 1 1 1 1 12 13 19 3 3 4
8 6 6 5 2 2 2 6 2 1 0 1 1 2 2 5 3 3 3
9 6 6 5 2 2 2 6 2 1 0 0 0 2 2 5 3 3 3

10 5 6 5 2 2 2 6 2 1 0 0 0 2 2 4 3 3 3

The research utilized LAN data from a university dormitory, which may exhibit net-
work traffic characteristics distinct from other environments such as home networks or
small-office/home-office (SOHO) settings. These environments often encounter resource
constraints that could differently affect the detection and analysis of SD events. Con-
versely, analyzing SD in large enterprise networks could yield significant benefits in terms
of financial and resource management. However, my findings have not been directly tested
in these varied settings, and it is common for studies to encounter challenges when at-
tempting to translate their models across different environments. To address this, my
study employed a university dormitory setting for data collection, hypothesizing that it
provides a hybrid representation of residential and institutional network traffic—merging
casual internet usage by residents with university-related activities such as accessing cloud
resources or remote sessions.
By leveraging data that potentially spans multiple domains, my aim was to enhance the
robustness and applicability of my SD event identification method to both home and
enterprise environments. Nevertheless, this assumption is speculative and requires further
empirical validation. Specifically, in home environments, an experiment over a significantly
longer time span would be necessary to gather a comparable volume of data. The choice
of a dormitory setting was primarily driven by the convenience of collecting a large and
diverse dataset.
An additional aspect of this research involved evaluating the generalizability of my findings
by applying the methodology in different locations and at various times. These experi-
ments validated my model by producing results with minimal deviation, as expected from
the highly similar flow characteristics and behaviors observed across locations and over
time. To rigorously confirm the robustness of the chosen method, testing on data sampled
at significantly different times and from varied university dormitory environments might
be necessary. Despite some variations, the data confirmed the model’s validity within the
current settings. My findings also demonstrated that the methodology is effective even
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with considerably lower flow counts, indicating potential applicability in smaller environ-
ments.
My empirical definition of an SD event is based on the occurrence of prolonged incidents
characterized by statistically extreme delays and jitter. This approach aims to identify
events that are most likely to significantly impact the perceived network service quality.
By focusing on sustained extreme events, I sought to adopt a more conservative estimate
to further limit false positives. However, whether these identified SD events translate
to actual impacts on user QoE was not directly assessed in this study. Investigating
this relationship would require a more controlled experiment or the integration of expert
knowledge, both of which were outside the scope of this study and remain areas for fu-
ture research. My method provides a conservative statistical framework that operates
effectively in an unsupervised manner.
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Chapter 5

Intra-Flow Latency-Induced
Service Degradation Detection

This chapter explores the home network environment focusing on the limitations of resi-
dential network devices. Through a horizontal separation of the flows collected and com-
pleted with SD events using the statistical heuristic presented in Chapter 4 the network
data is split into an O and NO part. I focus on following statistical analysis regarding
different split metrics, I build and evaluate various models for a classification task (with
the presence of SD in the NO part as target) and 4 regression problems (with the target of
predicting the amount of SD events in the NO parts and the length, start and end indices
of its longest SD event).
My work specifically focuses on flows measured at Location 2. This focus helps to reduce
the dataset’s size, simplifying our analysis and making the evaluation more straightfor-
ward. Nonetheless, as indicated by the results in Section 4.4, the findings are transferable
to other measured locations and, by extension, to similar environments.
The rest of this chapter is organized as follows: Section 5.1 introduces the foundational
concepts and preparatory considerations, including the methods and metrics used to iden-
tify and handle service degradation (SD) events through the O/NO split. Section 5.2
details my analysis, focusing on threshold analysis for effective LAN delay monitoring,
optimal O/NO split thresholds, and the distribution of flow features following the O/NO
split. Section 5.3 evaluates the predictive power of the observable parts of network flows,
covering data preparation, experimental design, and model performance metrics for both
classification and regression tasks, along with a feature importance analysis of the best
classification model. Section 5.4 discusses the implications of my findings, focusing on
predictive performance and optimal thresholds, LAN delays, variable delay thresholds,
model performance limitations, and practical considerations, while also suggesting future
research directions.
As with the case of the SD analysis, all source codes and the evaluation results of the
classification and regression models are available as a supportive material at [14].
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5.1 Foundational Concepts and Preparatory Considerations

5.1.1 Network Flow Monitoring in Constrained Environments

The notion of monitoring networks is not novel. It has long been acknowledged as an
imperative for maintaining network health [34, 24, 29]. The procedure of network flow
measurement is described in Section 3.1. However, monitoring becomes a Herculean task
in constrained environments like home routers.
Several challenges punctuate this scenario:

• Hardware Limitations: Home routers are often not designed with extensive mon-
itoring in mind. Their primary task is to route traffic efficiently. Monitoring every
packet, especially in high-traffic scenarios, can overburden their limited computa-
tional capabilities.

• Diverse Traffic Patterns: With the proliferation of IoT devices, gaming consoles,
streaming devices, and traditional computing hardware, home networks are a melting
pot of diverse traffic patterns. Identifying anomalies or degradation patterns amid
this diversity is challenging.

• Real-time Analysis Needs: Detecting and mitigating service degradation requires
real-time or near-real-time analysis. Given the hardware constraints, achieving this
real-time insight is often not feasible.

• Storage Constraints: Storing logs for deep analysis might seem like a solution.
However, storage, like processing power, is a luxury in many home routers.

While solutions like offloading monitoring to cloud servers or using dedicated monitoring
hardware exist, they come with privacy concerns or additional costs. Thus, the conundrum
remains — how does one monitor effectively in environments inherently ill-equipped for
the task?

5.1.2 Hardware Offloading in Network Devices

Network devices utilize a dual-path architecture to handle packet processing efficiently:
the fast path, which employs dedicated hardware for forwarding tasks, and the slow path,
which relies on CPU resources for more complex processing. Depicted in Figure 5.1, this
design effectively caters to the distinct requirements of data plane and control plane tasks,
where packets requiring minimal processing are directed through the fast path, and those
necessitating more extensive processing are handled by the slow path [22, 7, 37].
Typically, the initial packets in a network flow are processed by the CPU. This initial slow-
path processing involves critical tasks such as forwarding lookup to determine the egress
port/zone, NAT policy lookup, and security policy enforcement. The CPU’s processing
capabilities enable thorough inspection and enforcement of policies. However, relying on
the CPU for packet forwarding across all network flows can be resource-intensive and may
lead to performance bottlenecks under heavy traffic loads.
To mitigate these performance issues, certain flows that meet specific criteria are of-
floaded to specialized hardware for fast-path processing. In connection-oriented protocols
like TCP, flows might be flagged for fast-path processing after the connection is fully es-
tablished, which typically occurs after the TCP three-way handshake. In contrast, for

40



connectionless protocols like UDP, flows can be offloaded to the fast path after processing
the initial packet, as there is no formal connection establishment process. Additionally,
some flows might be flagged for fast-path processing once encryption tunnel establishment
is complete.
Once the necessary initial packets are processed, subsequent packets in the same flow can
be offloaded to specialized hardware for fast-path processing. This offloading significantly
reduces the CPU’s workload, enhancing the device’s overall performance. The dedicated
hardware processor then handles the remaining packets in the flow, ensuring swift and
efficient processing.
However, certain flows may require specialized network functions that cannot be fully
addressed by inspecting only the initial packets. These functions include complex analysis
and inspection tasks such as application control, device intelligence, deep packet inspection
(DPI), and intrusion prevention system (IPS) functions.
To maintain necessary visibility over network flows, network devices can be configured to
handle flows in the slow path up to a certain threshold before offloading them to hardware-
accelerated processing. This approach ensures that essential visibility and control for
performing network functions are retained. While the CPU manages the traffic, detailed
inspection and comprehensive monitoring are possible, providing deep visibility into the
network.
The implementation of offloading mechanisms varies across different vendors and their
product lines, each differing in technical, methodological, and functional details. For
instance, some implementations might support flagging flows that meet specific criteria
in the fast path to be redirected back to the CPU for more detailed inspection. Other
implementations may utilize more than the initial packets of a flow before offloading to
hardware-accelerated processing. Criteria for fast-path processing might include trusted
applications or low-risk traffic, and latency-sensitive applications requiring minimal delay.
The dual fast-path slow-path approach underscores the inherent challenges of network
monitoring in resource-constrained environments. By leveraging the strengths of both
hardware and software, it facilitates the implementation of simple, time-critical algorithms
in hardware and more complex network functions in software. Balancing hardware of-
floading and CPU processing enables network devices to achieve high performance while
retaining essential control and visibility, tailored to the specific needs and behaviors of
network traffic.

Figure 5.1: Generic architecture of a network device with hard-
ware offloading capabilities.
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Figure 5.2: Illustration of the horizontal separation of a network
flow into observable and non-observable segments.

5.1.3 Horizontal separation of Flows

In this study, the decision to keep a flow in the software layer or transition it to the
hardware layer is governed by a threshold parameter, θ. This threshold defines the packet
limit within which each flow should be monitored by the software layer. Once a flow’s
packet count surpasses this threshold, it transitions to the hardware layer.
Mathematically, if p represents the number of packets in a flow, then:

State of Flow =
{

Observable if p ≤ θ

Non-observable if p > θ

This threshold-based differentiation can be understood as the horizontal separation of
communication space. The θ parameter determines how many packets of a given flow are
considered observable. Based on this parameter’s value, two scenarios can occur:

(i) If the size of a given flow (number of packets) is less than or equal to the threshold,
||fi|| ≤ θ, where fi denotes the ith network flow, all packets of the flow are observed.

(ii) For ||fi|| > θ, the observed packets are denoted by Op and the unobserved by NOp.
Individual packets are represented as pj , where j indicates the chronological order.
The flow fi then breaks down into two subsets: Op = {p1, . . . , pθ} ⊆ fi and NOp =
{pθ+1, . . . , p||fi||} ⊆ fi.

Figure 5.2 illustrates a flow separated into observable and non-observable segments based
on the θ parameter. In this figure, the observable segments are highlighted in green, indi-
cating the portion of the flow that remains within the software layer. The non-observable
segments are shown in gray, representing the portion of the flow that transitions to the
hardware layer. The red dashed line denotes the threshold θ at which this transition
occurs. I refer to this process as horizontal separation.

5.1.4 Refining Observability of LAN Delays

The θ parameter does not guarantee a consistent number of observable LAN-side delays.
Due to the vertical separation process, the first θ packets will have a substantially lower
number of LAN delays, as WAN-side delays are excluded and packet bursts may occur,
further reducing the useful PIAT values.
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Figure 5.3: Illustration of a split SD
event in a flow.

Figure 5.4: Illustration of a potential
split SD event.

To focus on studying the behavior and predictive power of selected LAN delays, I introduce
an additional threshold parameter, m, specifically for LAN delays. This threshold is
defined similarly to θ but is applied exclusively to LAN delays. Essentially, the observable
part of the flow consists of the delays measured up to this new threshold m, while delays
collected beyond this point are considered non-observable. Similar to the packet-based
separation, if a flow has fewer delays than the threshold m, it will be entirely observable.

5.1.5 Handling Split SD Events

While separating delay and jitter values based on the observable (O) and non-observable
(NO) split is straightforward, identifying and handling SD events in this context is more
complex. There are three possible scenarios when performing horizontal separation re-
garding SD events:

• The entire SD event falls into the O part of the flow (i.e., SDend < Oend).

• The entire SD event falls into the NO part of the flow (i.e., SDstart > Oend).

• The SD event is split between the O part and the NO part of the flow (i.e., SDstart <
Oend and SDend > Oend).

In the latter case, it is necessary to decide whether to eliminate the SD event or to divide it
into two smaller events. The rationale for eliminating the SD event is to prevent incomplete
SD events from appearing at the end of the O part and the beginning of the NO part,
especially when these segments do not meet the SD event requirements, such as being
shorter than the MSL for that specific category. Conversely, the rationale for retaining
and splitting the SD event is based on the importance of preserving potentially crucial
information. Therefore, I chose to preserve these events by splitting them and marking
them as split SD events for further study. Figure 5.3 visually illustrate this scenario.
However, this approach introduces another complexity: how to handle LAN delay se-
quences that nearly qualify as SD events but fall short at the end of the O part? These
sequences resemble split SD events but do not develop into full SD events in the NO part.
From an objective perspective, we can only observe the O part of a flow and lack informa-
tion to determine whether a partial SD event is a true split event. To address this, I mark
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Figure 5.5: Intra-flow SD detection.

both actual split SD events and apparent split SD events, where delays end precisely at
the O part’s boundary, as split SD events. This scenario is depicted in Figure 5.4.
Additionally, I calculate the ratio of the length of a split event to the MSL for that flow’s
application category as follows:

fsplit SD ratio =
f|partial SD event|

fMSL
,

where f stands for a flow. The fsplit SD ratio may exceed 1 if the SD event at the end of
the flow surpasses the MSL limit. This can occur when an SD event concludes exactly at
the end of the flow or continues into the NO part of the flow.
Another type of split I record is the apparent split, which occurs when a real O delay ends
precisely at the end of the O part, creating the illusion that it may be a split SD event
continuing into the NO part.

5.1.6 Intra-Flow Service Degradation Detection

Preserving a high-quality user experience hinges on the timely and accurate detection of
service degradation, a task that presents challenges in edge devices (such as home routers)
with limited resources. Once the flow crosses the threshold into the non-observable domain,
degradation becomes imperceptible.
The cornerstone of my method capitalizes on the observable states of specific flows. Using
early flow features available up to the O/NO split threshold, I make educated inferences
about the behavior and characteristics of flows that have advanced into the non-observable
realm. This strategy involves harnessing the wealth of information from the observable
pool to infer the state and performance of flows that elude direct observation. I call this
procedure intra-flow service degradation detection as it uses information available within
a specific flow to predict later flow behavior, hence the intra-flow nature of the detection.
Figure 5.5 visually depicts this process.
The ultimate objective is to perform a binary classification using information from the
observable portion of the flow to determine the presence or absence of service degradation
in the non-observable portion. By analyzing the early flow characteristics, my goal is to
accurately predict whether an SD event occurs later in the flow.
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Figure 5.6: Relationship of O/NO split thresholds of LAN delays
(m) to the O/NO split threshold of packet (or PIAT) counts (θ)

5.2 Analytical Framework

5.2.1 Threshold Analysis for Effective LAN Delay Monitoring in SD
Detection

In this study, I aim to identify an optimal m value that allows for accurate determination
of flow behavior based on the O part, thereby enabling high SD detection levels in the
NO part. However, the parameter that can be influenced in a production environment is
the θ threshold. To derive this for a specific O/NO split threshold, I adopt an empirical
approach. During the vertical separation of each flow, I record the actual PIAT count
leading to a specific number of LAN delays. By analyzing the distribution of PIAT counts
for a specific O/NO split threshold, we can estimate the number of PIATs needed to capture
the required number of LAN delays, thus determining the corresponding θ threshold.
Figure 5.6 shows the boxplot for each m value on the y-axis and the distribution of
PIAT counts (θ) on the x-axis in the plot on the left. The plot on the right displays the
corresponding ECDF plots. I observe that between O/NO splits of 1 and approximately
16, the PIAT count ranges consistently widen. Beyond this point, the range of possible
PIAT counts remains relatively stable, although the center shifts. The median PIAT count
is about four times the LAN delay count, indicating that we need to collect approximately
four times the PIAT values for a specific m in around half of the flows. For instance, if
the O/NO split is set at 10 LAN delays, we need to monitor about the first 40 packets of
the flow to achieve this count.
Table 5.1 presents the relative PIAT count for each O/NO split at 80, 85, 90, 95, and 99
percent on the ECDF plot. The table shows the ratio of collected PIATs relative to LAN
delays for the corresponding percentage of flows.
Table 5.1 presents the relative PIAT count for each O/NO split for 80, 85, 90, 95, and 99
percent on the ECDF plot. The table shows the ratio of collected PIATs relative to LAN
delays that is valid for the corresponding percentage of flows. From Table 5.1, I find that
to ensure at least m LAN delays (i.e., a fully observable part) for about 80 percent of the
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flows, we need to collect at most 5-8 times as many packets. At 90 percent, this ratio
exceeds 10 times the LAN delay count in some cases and remains above 7 times for the
majority of examined O/NO splits.

Table 5.1: Relative PIAT count for a specific m O/NO split threshold shown for a specific
ECDF proportion

m 80% 85% 90% 95% 99%

5 6.20 6.60 7.60 10.00 18.80
10 8.10 9.40 11.50 15.30 22.00
15 8.00 9.13 10.80 13.13 16.00
20 7.30 8.20 9.30 10.80 12.30

It is important to note that a twofold ratio is expected since I am only examining LAN
delays, leaving at least half of the communication unexamined. To examine at least 10 LAN
delays for 80 percent of the flows, we need to observe 81 packets and the corresponding
PIATs on the software side. Conversely, if we consider only 5 LAN delays, we need around
31 packets.
The relationship between LAN delay counts and packet counts underscores the challenge of
determining an optimal threshold. I aim to identify the lowest m threshold that provides a
satisfactory view of flow behavior while minimizing the impact on high-speed networking,
even when translated to the θ threshold.

5.2.2 Statistical Analysis of Optimal O/NO Split Threshold

To empirically estimate the optimal O/NO split threshold, I perform a statistical analysis
of LAN delays. The goal is to identify common patterns in the behavior of LAN delays
that could suggest a universal m threshold. I conduct this analysis in an application
type-agnostic manner to identify a single threshold suitable for all application types.
One heuristic that can indicate a common O/NO split threshold is the behavior of cumu-
lative LAN delays. If we observe constant increases for the majority of flows, the split
point is arbitrary since the delay behavior does not change throughout the flow. Thus, the
O part’s behavior reflects what we would expect in the NO part. Conversely, if cumulative
LAN delays change at certain points, including these changepoints in the observable part
could provide a better understanding of flow behavior. When examining the cumulative
LAN delay of flows at specific LAN delay counts, we see that many flows exhibit a linear
increase in cumulative delay. However, there is significant variability among the flows:
some have steeper increases, while others have more gradual ones. Common inflection
points, where multiple flows experience changes in their cumulative LAN delay growth,
suggest these points may indicate general patterns.
To further study changepoints, I compute them for all flows using the CUMSUM method.
This method accumulates the cumulative sums of LAN delay changes (essentially cumu-
lative jitter) of each flow as a time series in both positive and negative directions. The
accumulators are offset (decreased for the positive accumulator and increased for the nega-
tive one) by a 5 ms drift to reduce the impact of LAN delay changes. Once an accumulator
reaches an arbitrarily set threshold of 10 ms (or -10 ms), that index is marked as a change-
point.
From the distribution plot of changepoints in Figure 5.7, I observe certain LAN delay
indices where many flows experience changes. This could indicate common network events
or patterns impacting multiple flows simultaneously. From Figure 5.7, I find that the vast
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Figure 5.7: Distribution of changepoints across all flows.

majority (close to 80% from the ECDF plot) of changepoints occur before the 20th LAN
delay, with the highest concentration around the 5th delay. This suggests a potential
selection range (between 5 and 20 LAN delays) for the O/NO division point, as the early
part of the flow experiences more volatility. The ECDF plot also indicates that to cover
around 90% of the changepoints, I would need to double the observed delays. Thus, a
higher LAN delay count may result in diminishing returns for changepoint identification.
Based on these findings, I will examine analysis results for O/NO splits at 5, 10, 15, and 20
LAN delays. These splits cover the identified range of changepoints well and offer insights
into O/NO flow behavior at granular steps.
The average number of changepoints detected for each flow is approximately 1.90. This
gives us an understanding of how often, on average, there is a notable change in the
delay characteristics of a flow. Despite the average being 1.90, the range (from 0 to
120 as depicted in previous plots) suggests high variability among flows. This variability
underscores the dynamic nature of flows, with significant changes occurring during their
duration.

5.2.3 Flow Feature Analysis Following the O/NO Split

In this section, I analyze the behavior and distribution of different flow features following
the O/NO split at the identified thresholds.

5.2.3.1 Delay Count, SD Count, and Timespan O/NO Distribution

Table 5.2: Selected O/NO Splits Data

m O delay% O SD% SD NO/O% pred. avg. fsplit SD ratio

5 50.07 2.32 50.64 0.007280
10 65.34 47.55 32.55 0.010874
15 72.88 77.09 32.29 0.007449
20 78.14 86.03 39.83 0.004398
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(a) O/NO split: 5 (b) O/NO split: 10

(c) O/NO split: 15 (d) O/NO split: 20

Figure 5.8: Delay count, SD count and timespan O/NO distribu-
tion at different O/NO split thresholds

Figure 5.8 presents the distribution of delay count, SD count, and timespan between the O
and NO parts for O/NO splits of 5, 10, 15, and 20. As the O/NO split threshold increases,
the O parts of the network flows capture a longer timespan, corresponding to an increase
in delay counts and SD counts. The majority of flows do not exhibit SD events in either
the O or NO parts, as indicated by the mean of 0 in the boxplots and the vertical step
in the ECDF plots at this count. For flows with SD events, the maximum number of SD
events in the O part rises from one at an O/NO split of 5, to two at a split of 10, four at
15, and five at 20. In the NO parts, the distribution of SD event counts remains consistent
across thresholds, ranging from 1 to 15.
The delay counts in the O part align with the expected distributions, with delays reaching
up to the thresholds. The median delay count remains at 5 across all thresholds, with the
mean also around this value. ECDF plots indicate that approximately 70% of flows have
at most 5 delay counts at thresholds from 10 to 20, showing that most flows are short and
that the O parts cover a significant portion even at a split of 5. In the NO parts, over
80% of flows have at most 10 delays, and at threshold 5, more than half of the flows have
a maximum of one delay. Most flows have no delays in the NO part at other thresholds,
but outliers with over a hundred delays skew the average delay count to 2 at all threshold
levels.
The timespan also exhibits similar patterns to delay counts, with an average increase of
10 seconds per threshold level. At threshold 5, the mean timespan is around 10 seconds.
However, the overall distribution of timespans is similar across all thresholds, with com-
parable ECDF plots, similar boxplot extents, and median values. The median timespan
is 1 second for thresholds 10 to 20, and 300 ms for a split of 5. In NO parts, the timespan
can extend up to 30 minutes, the active timeout for expiring flows. At threshold 5, 70%
of flows have NO parts of 1 ms or less, increasing to around 80% at thresholds 10 and 15,
and over 90% at 20. This indicates that higher O/NO splits capture significantly fewer
flows in the NO part, except for substantially longer flows.
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Table 5.2 presents numerical statistics regarding the delay and SD distribution across the
O and NO parts of the flows. O delay% measures the percentage of delay falling into the
O part (implying the ratio in the NO part). O SD% does the same for SD events. SD
NO/O% pred. is the percentage of flows that have SDs in the O part and NO part too,
hinting at the predictive value of this metric alone for NO SD classification. The average
fsplit SD ratio is also shown.
The share of SD in the O part for an O/NO split threshold of 5 is only 2.32%. This
increases steadily, reaching almost 50% at threshold 10, over 77% at 15, and over 86% at
threshold 20. The delay count shows a similar pattern, starting at 50% and reaching 78%
of delays in the O part by threshold 20.
The SD NO/O% pred. is at 50% at an O/NO split threshold of 5, meaning that only
half of the flows that have SD in the O part also have SD in the NO part. At threshold
10, it drops to only 32%, remaining at the same level at threshold 15, with an increase to
39% at threshold 20. This metric fluctuates for different O/NO splits, explained by the
split SDs and guessed split SDs. When an SD event in the NO part at lower thresholds
gets split into the O part, it generates an SD event in the O part even if there was no SD
previously, influencing this metric. Similarly, if outlier delays that were not long enough
to trigger an SD event reach the end of the O part, this triggers a guessed split SD event
as well. This behavior is not included in the calculation of the SD O% metric (as it may
result in higher than 100% of the delays occurring in the O part) but is captured by the
SD NO/O% pred. metric, which examines how well such a simple heuristic predicts the
presence of SD in the NO part of the flow. This indicates that this metric alone yields
poor prediction performance. In other words, not all flows that have SD in the O part
have SD in the NO part.

5.2.3.2 Characteristics of the Longest SD Event in the O Part and NO Part

Analyzing the length, start, and end indices of the longest SD event in both the O part
and NO part of the flow provides valuable insights for predicting similar metrics in the NO
part. These metrics are crucial for understanding the behavior of SD events and improving
predictive models.
Figure 5.9 displays histograms of metrics related to the longest SD event in network flows
for both O and NO parts, split by O/NO thresholds of 5, 10, 15, and 20. The top
histograms show the length of the longest SD event, the middle histograms show the start
index, and the bottom histograms show the end index of the longest SD event. The start
and end indices are absolute, meaning the lowest possible NO index equals the threshold
value (e.g., 10 for a threshold of 10). Spikes at -1 indicate flows without any SD events in
the respective part (O or NO).
For the O part, the length of the longest SD event generally increases with higher thresh-
olds. At a threshold of 5, most SD events are less than 2 delays long, although there are a
few SD events lasting 3 or 4 delays. The number of SD events with a length of 5 delays is
negligible. In contrast, at higher thresholds, the distribution of SD event lengths is more
uniform. There are approximately the same number (around 1,000) of maximum length
SD events that last for 1 delay as there are for those lasting 5, 10, or 19 delays. However,
the vast majority of flows have no SD events at all, as previously discussed. In the NO
part, all thresholds show a decreasing frequency of SD events as the length increases, with
the longest SD events reaching around 40 delays for all thresholds.
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Figure 5.9: Characteristics of the longest SD event in the O part
and NO part

The start index histograms for the O part reveal that at a threshold of 5, SD events mostly
start before the fourth delay. For the other thresholds, SD events can start at any delay.
In the NO part, the start indices range from the threshold value up to about 80 delays,
with higher counts clustering near the lower threshold values.
The end index histograms show a similar trend. For the O part, the end indices show higher
frequencies towards the end of the O portion, with the highest count at the threshold limit
indicating either a split SD event or an apparent split. In the NO part, end indices are
widely spread, showing patterns similar to the start indices, indicating that SD events can
extend across a significant portion of the NO segment, reaching over 80 units.

5.2.3.3 Studying SD Location and Split SDs

Another important metric is whether an SD event was split between the O part and NO
part, where the SD events are located in the O and NO parts, and the number of guessed
and apparent splits. This section examines the cardinality of these metrics.
The two grouped bar plots in Figure 5.10 display the characteristics of SD events and
network flows across different O/NO split thresholds (5, 10, 15, and 20). The left plot,
labeled SD stats, counts all SD events separately, even if multiple events occur within a
single flow. Categories include short O SDs, O SDs, apparent split SDs, real split SDs,
guessed split SDs, and NO SDs. Short O SDs represent SD events within O parts shorter
than the O threshold. O SDs are events entirely within the O part, while apparent split
SDs touch the end of the O part, giving the illusion of split events. Real split SDs span
both O and NO parts, whereas guessed split SDs are events that appear as the beginning

50



5 10 15 20
O/NO split

102

103

104

105

C
ou

nt

15
5

11
86

10
38

2 16
88

7

64

17
74 25

24

22
96

13
6

17
19

14
42

81
3

11
04

3

15
47

3

84
21

39
78

63
99

2

21
72

9

82
97

48
60

15
34

5

65
91

39
74

27
69

SD stats
SD stats

short O SDs
O SDs
apparent split SDs
real split SDs
guessed split SDs
NO SDs

5 10 15 20
O/NO split

101

102

103

104

va
lu

e

15
5

11
86

10
36

9

16
82

0

18
7

32
40

29
80

19
38

11
04

3

15
47

3

84
21

39
78

64
4

36
4 56

6

29
7

13

17
9 31

6 42
9

12
61

7

42
17

20
07

11
97

Flow stats

Flow stats
short O only SDs
O only SDs
O/NO real split SDs
O/NO guessed split SDs
O/NO separate SDs
NO only SDs

Figure 5.10: Location of SD events in the flows.

of an SD event at the end of the O part but do not grow into a real SD event in the NO
part. NO SDs occur entirely within the NO part.
The right plot, labeled Flow stats, categorizes flows based on their SD events. If a flow has
multiple SD events, it is counted in a single category. Categories include short O only SDs,
O only SDs, O/NO real split SDs, O/NO guessed split SDs, O/NO separate SDs, and NO
only SDs. Short O only SDs indicate flows shorter than the O part. O only SDs are flows
with SDs exclusively in the O part, while O/NO real split SDs have confirmed split SDs.
O/NO guessed split SDs include guessed splits, and O/NO separate SDs have distinct SDs
in both parts. NO only SDs represent flows with SDs entirely in the NO part. Flows too
short for NO part analysis are indicated with a patterned filling. Apparent splits here are
regarded as normal O SDs and are counted either as O only SDs or O/NO separate SDs
based on further flow behavior.
As I increase the threshold, the number of flows with fewer delays than the threshold
increases. These flows are excluded from further analysis as they do not have an NO part.
At threshold 5, the number of O SDs is low with a few additional apparent split SDs;
however, the number of splits and NO SDs are orders of magnitude higher. The highest
count is for guessed splits, exceeding 63,000. The balance between the metrics improves
for higher thresholds, where the number of O SDs (including apparent splits) is in the
same order of magnitude as the number of NO SDs. For all thresholds, splits and guessed
splits have the highest cardinality. However, except for threshold 5, these are distributed
more equally.
The flow analysis shows similar patterns, with the count of short O only SD flows increasing
with higher thresholds, and flows with split SDs dominating. Here, the real splits clearly
outnumber guessed splits (by an order of magnitude), indicating that this metric is crucial
for predicting whether an NO part will have an SD event. The number of flows with SDs
only in the NO part is similarly high but decreases steadily as the threshold increases.
There are only a few flows with separate SD events in both the O and NO parts at
threshold 5, while this number increases to match the number of flows with guessed splits
at higher thresholds.
The average fsplit SD ratio tends to be very low for every threshold examined, as shown in
Table 5.2. This means that only a small number of flows have split SDs, and those that
do tend to be shorter than the MSL of the corresponding application category.
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5.3 Model Evaluation and Performance Analysis

In this section, I explore the potential of the O parts of flows to predict various metrics in
the NO parts. I aim to assess how well information from the O part can infer characteristics
of the NO part. Specifically, I use classification models in a binary setting to determine
the presence or absence of SD events in the NO part. Additionally, I utilize regression
models to predict the number of SD events and various attributes of the longest SD event
in the NO part, such as its length, and the start and end indices relative to the flow’s
beginning.

Table 5.3: Overview of Experimental Design

Objective Null All True Random O SD-based Split SD Logistic/ XGBoost MLP
Predictor Predictor Predictor Predictor Predictor Ridge

Objective 1 ✓ ✓ ✓ ✓ ✓ Logistic ✓ ✓
Objective 2 - - - ✓ ✓ Ridge ✓ ✓
Objective 3 - - - ✓ ✓ Ridge ✓ ✓
Objective 4 - - - ✓ ✓ Ridge ✓ ✓
Objective 5 - - - ✓ ✓ Ridge ✓ ✓

5.3.1 Data Preparation

Data collected from Monday to Wednesday was used as training data, while data from
Thursday and Friday was used for testing. Only flows that last at least until the O/NO
split were included, as shorter flows do not have an NO part.
The input data includes the following features:

• Minimum, maximum, median, mean, and standard deviation of delays and jitters in
the O part.

• Delay and jitter values in the O part as individual features.

• Count of SD events in the O part.

• Length, start, and end indices of the longest SD event in the O part, indexed from
the start of the O part.

• Name of the application and application category of the flow.

• Location and connection type (wired or wireless) of the flow.

• fsplit SD ratio.

The application name, application category name, location, and connection type columns
were one-hot encoded to ensure compatibility with all models. Additionally, I created
a scaled version of the input datasets using the Standard Scaler method, as the MLP
algorithm requires scaled data.
Table 5.4 shows the input sizes as flow count and feature count for the training and testing
sets for each O/NO split value. The discrepancy in test sizes as the O/NO split threshold
changes is due to fewer flows meeting the criterion of running at least up to the end of
the O/NO split threshold. Additionally, while all application categories, connection types,
and locations are represented at each threshold, the observed applications differ slightly
for the same reason.
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Table 5.4: Train and Test Sizes with Input Feature Counts for Different O/NO Splits

O/NO Split Train Size Test Size Input Feature Count

5 905,407 flows 507,359 flows
141 features (including 6 application category name, 101
application name, 9 location, 2 connection type OH en-
coded features)

10 264,183 flows 154,021 flows
140 features (including 6 application category name, 90
application name, 9 location, 2 connection type OH en-
coded features)

15 168,463 flows 99,290 flows
144 features (including 6 application category name, 84
application name, 9 location, 2 connection type OH en-
coded features)

20 122,814 flows 73,043 flows
152 features (including 6 application category name, 82
application name, 9 location, 2 connection type OH en-
coded features)

5.3.2 Experimental Design

This study aims to evaluate the predictive power of the O parts of network flows to predict
various metrics in the NO parts. The modeling targets five distinct objectives:

• Objective 1: Determining the presence or absence of SD events in the NO part as
a binary classification problem.

• Objective 2: Predicting the count of SD events in the NO part as a regression
problem.

• Objective 3: Predicting the length of the longest SD event in the NO part, with a
value of -1 if no event exists, as a regression problem.

• Objective 4: Identifying the start index of the longest SD event in the NO part,
measured from the beginning of the flow, with a value of -1 if no event exists, as a
regression problem.

• Objective 5: Identifying the end index of the longest SD event in the NO part,
measured from the beginning of the flow, with a value of -1 if no event exists, as a
regression problem.

To address these objectives, I trained various models for each target, as summarized in
Table 5.3.
For objective 1, I evaluated a null predictor (always predicts false—no SD in the NO
part); all true predictor (always predicts true—SD in the NO part); a random predictor;
an O SD-based predictor (predicts true if there is an SD in the O part, otherwise predicts
false); a split SD metric-based predictor (predicts true if the split SD ratio is greater than
0, otherwise predicts False); Logistic Regression; XGBoost; and Multi-Layer Perceptron
(MLP).
For objective 2, I evaluated an O SD-based predictor (predicts 1 if there is an SD in the
O part, otherwise predicts 0); a split SD metric-based predictor (predicts 1 if the split SD
ratio is greater than 0, otherwise predicts 0); Ridge Regression; XGBoost; and MLP.
For objective 3, the models evaluated were an O SD-based predictor (predicts MSL if there
is an SD in the O part, otherwise predicts 0); a split SD metric-based predictor (predicts
MSL if the split SD ratio is greater than 0, otherwise predicts 0); Ridge Regression;
XGBoost; and MLP.
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For objective 4, the models used were an O SD-based predictor (predicts the index M if
there is an SD in the O part, otherwise predicts -1); a split SD metric-based predictor
(predicts the index M if the split SD ratio is greater than 0, otherwise predicts -1); Ridge
Regression; XGBoost; and MLP.
Lastly, for objective 5, I evaluated an O SD-based predictor (predicts MSL + M if there
is an SD in the O part, otherwise predicts -1); a split SD metric-based predictor (predicts
MSL + M if the split SD ratio is greater than 0, otherwise predicts -1); Ridge Regression;
XGBoost; and MLP.
I employed Grid Search to identify the best parameter settings for all models, and training
was conducted using 5-fold cross-validation. For classification, I aimed to maximize the
Area Under the Receiver Operating Characteristic (AUROC) for the Logistic Regression
and XGBoost models, and minimize the training loss for the MLP. For the regression tasks,
I optimized the negative mean squared error for both Ridge Regression and XGBoost.
To ensure reproducibility, random states were set to 42, and the MLP was run for 1000
iterations. The parameters used for Grid Search across all models are detailed in Table 5.5.

Table 5.5: Parameters for Grid Search Across Different Models

Model Name Python Library Parameters for Grid Search

Logistic Regression sklearn.linear_model [26] ’solver’: [’liblinear’, ’lbfgs’], ’penalty’: [’l1’, ’l2’], ’C’:
[0.001, 0.01, 0.1, 1, 10], ’max_iter’: [1000]

Ridge Regression sklearn.linear_model [26] ’alpha’: [0.1, 1, 10]

XGBoost Classifier
XGBoost Regressor xgboost [8] ’n_estimators’: [100, 200, 500], ’learning_rate’: [0.01,

0.1, 0.2], ’max_depth’: [3, 5, 7]

MLP Classifier
MLP Regressor sklearn.neural_network [26]

’hidden_layer_sizes’: [(50,), (100,), (50, 50)], ’activa-
tion’: [’tanh’, ’relu’], ’solver’: [’sgd’, ’adam’], ’alpha’:
[0.0001, 0.05], ’learning_rate’: [’constant’, ’adaptive’],
’max_iter’: [1000]

5.3.3 Evaluation Metrics for Model Performance

5.3.3.1 Classification Metric

To compare the performance of different models for predicting the presence of SD events
in the NO part, I used various evaluation metrics widely employed in related work. These
metrics include precision, recall, and the F1-score (the harmonic mean of precision and
recall). While precision is the ratio of true positive flows to all flows identified as positive
(i.e., having SD in the NO part), I also included the Negative Predictive Value (NPV),
which is the counterpart for flows that lack SD events. Recall (also known as sensitivity or
True Positive Rate (TPR)) measures how well the model identifies positive flows, i.e., the
ratio of true positives to all actual positives. The specificity (True Negative Rate (TNR))
is the equivalent metric for negative samples. Accuracy (the ratio of correct predictions to
all samples) and balanced accuracy, which accounts for class imbalance by averaging TPR
and TNR, were also included.

5.3.3.2 Regression Metrics

To comparatively evaluate the regression tasks, I used the mean absolute error (MAE),
root mean squared error (RMSE), median absolute error (Median AE), mean absolute
percentage error (MAPE), and R2 metrics. MAE measures the average absolute magnitude

54



of the errors compared to the target variable (SD count, length, start index, and end index
of the longest non-observable SD event), making this metric directly comparable with the
distribution of the corresponding metrics in Section 5.2.3. RMSE, derived from the mean
squared error, represents the average squared difference between the estimated value and
the actual one, transforming it back into the scale of the target variable. Due to the
squaring of errors, RMSE is more sensitive to outliers than MAE. Median AE focuses on
the median error, ignoring outliers and providing a representative error achieved by the
model. The R2 metric indicates the goodness of fit, showing how well the predictions
approximate the actual data points, with R2 = 1 representing perfect prediction. This
metric also indicates how well unseen samples may be predicted by the model relative
to the mean of the observed data. While R2 typically ranges between 0 and 1, negative
values are possible, indicating that the mean of the data provides a better fit than the
predicted values. MAPE, similar to R2, normalizes the error and makes it comparable
across different models using a percentage value. However, MAPE is unusable if the
target variable is zero in most cases, as it approximates infinity.
All classification and regression metrics can be found in the Scikit-Learn documentation1.

5.3.4 Classification Performance
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Figure 5.11: Classification metrics for NO SD presence prediction
at different O/NO split thresholds.

Figure 5.11 compares the classification metrics for each O/NO split threshold studied,
whereas Figure 5.12 depicts the Receiver Operating Characteristic (ROC) curves and
corresponding areas under the curves (AUROC). From the figures, I find that all trained
models showed significantly better performance than the random predictor, as well as

1https://scikit-learn.org/stable/api/sklearn.metrics.html#module-sklearn.metrics
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the all-true or all-null predictors (not shown in the plots). The null predictor achieved an
accuracy over 95% for all metrics (but only a balanced accuracy of 0.5), indicating a strong
presence of flows with no SD events in the NO part. In terms of specificity, NPV, and
accuracy, all models at every threshold showed excellent results (over 95% for all metrics,
many approaching 100%). This suggests that all approaches are able to correctly classify
flows that have no SD in the NO part, as these flows seem to exhibit consistent behavior
with no SD events in the O part, nor split SDs (as demonstrated by the good performance
of the simple heuristics). This is true both in terms of identifying the majority of such
flows (high TNR) and having a high number of correct predictions for flows predicted not
to have SD in the NO part (high NPV). The similarly high accuracy underscores the high
imbalance towards these types of flows in the data. However, when it came to correctly
identifying flows with non-observable SDs, the models did not perform as well.
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Figure 5.12: ROC curves with corresponding AUROC metrics for
NO SD presence prediction at different O/NO split thresholds.

Heuristic models (SD Based Predictor and Split SD Heuristic) demonstrated moderate
effectiveness with highly similar prediction results across all metrics when examined in-
dividually at each threshold. They achieved the highest recall and balanced accuracy at
all O/NO split thresholds (50% and 72%, respectively, for the two metrics at threshold
5, and around 0.8 and over 0.85, respectively, for the other thresholds). This indicates
that among all models, they were able to identify the highest number of flows with SD
events in the NO part, although still missing half of the positive flows. The high accuracy
reflects this result, and the balanced accuracy is improved by the relatively high recall.
However, these heuristics underperformed in terms of precision and, consequently, the
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F1-score when compared to other models. These results suggest that many of the flows
with non-observable SD events also have SD in their O parts. However, many flows with
SD events in the O part or guessed split SD events do not have SD events forming in the
NO part. Correctly capturing these flows appears to require considering other early flow
features not used by these simple heuristics.
In line with this, all sophisticated models, i.e., the Logistic Regression, XGBoost, and
MLP, exhibited much higher precision at the cost of lower recall. This means that they
identified fewer flows with SD in the NO part overall, but when they did, the prediction
was more often a true positive. The discrepancy between these two metrics was greatest at
the O/NO split threshold of 5, with XGBoost achieving a precision of 66% and over 72%
for the other two models, while recall was only 19% for XGBoost and just 9% for Logistic
Regression and MLP. Consequently, the F1-scores were low, with 30% for XGBoost and
half of this for the other two models, and a balanced accuracy of around 55-60%. This
suggests that at this split threshold, the models did not gather enough information to
confidently predict the more volatile behavior in the NO part.
By the O/NO split threshold of 10, the prediction metrics became more balanced for all
models. The simple heuristics maintained their lead in recall (78%) and balanced accuracy
(86%), while also improving their precision. However, precision remained under 45%,
highlighting the superiority of the more sophisticated approaches, which offered balanced
results with all metrics exceeding 64%. While recall was the lowest metric for these models,
they approached the recall of the simple heuristics, especially XGBoost and MLP, which
achieved a recall of 69% and a corresponding balanced accuracy of 84%. Their precision,
however, remained considerably higher than that of the simple heuristics, with XGBoost
excelling at over 80%. In terms of F1-score, this model achieved the best result at 74%,
highlighting its balance between recall and precision.
Going beyond this threshold to O/NO splits of 15 and 20 offered only marginal improve-
ments for all models, with the previously observed patterns remaining consistent. The
sophisticated models provided comparable results, with the XGBoost model excelling in
terms of precision (85%) and F1-score (77%). In balanced accuracy (85%), it fell short by
one percentage point from MLP and by 4% from the O SD-based heuristic. At threshold
20, there were only minor improvements in specific metrics, with some even decreasing.
This is explained by the significantly reduced number of flows considered, as many flows
fall entirely in the O part at this threshold (about half the amount available for the O/NO
split threshold of 10, as shown in Table 5.4). The results suggest that choosing such an
elevated split threshold offers no clear benefits.
The ROC curves offer model performance explainability by varying the threshold between
the positive (flows with non-observable SDs) and negative predictions. This provides a
more comprehensive view of a specific model and allows for comparison of the robustness
of different models. The curves show similar behavior to the patterns identified earlier.
However, here the simple heuristics demonstrate clear inferiority to the other models, even
at the O/NO split threshold of 5, with AUROC scores of 72% compared to over 87% for
the other models. The superior robustness of the XGBoost model is evident at every
threshold. At the O/NO split of 5, it already exceeds 0.9 in AUROC, reaching 0.97 by
threshold 10 and 0.98 by 15. Its ROC curve is the highest among the studied models and
follows a smooth pattern with no perceptible dips, unlike other models. Logistic Regression
and MLP exhibit similar patterns with highly correlated ROC curves and nearly identical
AUROC values. The lack of significant improvement beyond threshold 10 is also evident
in this figure.
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In conclusion, for the classification task, the majority of the studied flows had no SD
events in the NO part, which all models were able to identify with high accuracy. While
the simple heuristics capture the core features of non-observable SD patterns, they fall
short compared to more sophisticated models. The XGBoost model showed the most
promising results, offering a balance of high precision and good recall with a high balanced
accuracy, outperforming other studied approaches. Given that this model has the lowest
training time of the three and does not require feature scaling, it is an ideal choice for the
non-observable SD prediction task in this research.
In terms of O/NO split thresholds, I identified threshold 10 as the best in terms of predic-
tion performance relative to the O/NO split ratio. This threshold offers decent prediction
performance at a reasonable O/NO split point. A lower threshold does not include enough
information for a reliable prediction, while increasing the threshold further leads to only
marginal improvements in performance, resulting in diminishing returns.

5.3.5 Regression Performance

Figure 5.13 summarises the results achieved for all examined regression problems and
fitted models. The different plots correspond to the four regression tasks examined, with
the top-left plot referring to the non-observable SD count, and the rest to the longest non-
observable SD metrics. The regression metrics of different models are grouped together as
four vertical columns (models represented on the x-axis), each representing an O/NO split
threshold. Each marker inside such a column represents a specific regression metric. The
MAE, RMSE, and Median AE metrics are shown on the left axes on a logarithmic scale.
MAPE is depicted as the first scale on the right of the plots, also scaled logarithmically
for SD count but linearly for the other regression tasks. Finally, the R2 value is shown
on the rightmost vertical scale on a linear scale. This representation of all models and
metrics across different O/NO splits allows for a comprehensive visual comparison for
each regression task. Models with better performance will have higher R2 values and
lower values for all other metrics in the plots.
An interesting observation in the case of the SD count prediction and the longest SD
length statistic is that at the O/NO threshold of 5, the models resulted in generally good
metrics, except for R2. However, at the next threshold, all regression metrics, including
R2, improved. From this point on, at every threshold, R2 consistently increased while the
other metrics decreased. This indicates that the best-performing model will either be at
the O/NO split threshold of 5 or 20. For the other two tasks, the O/NO split threshold
of 5 seems to be the best, maintaining its edge (except for the R2 metric), while other
thresholds maintain significantly higher metrics.
The observable SD-based heuristic and split SD heuristic models produced poorer results
than the other regression models for all tasks. Their R2 metrics were all negative, at -1.5
for the count statistics and below -0.4 for the other tasks, indicating that the test data
could not be effectively evaluated using these heuristics. The two heuristics showed similar
behavior at each threshold and regression task pairing with minor differences. For the SD
count statistic, the split SD heuristic at threshold 20 performed best with an MAE of 0.04
and RMSE of 0.2, and a median AE of 0. Due to the target variable frequently being
0, the MAPE is in the 1014 range, indicating its irrelevance as it approximates infinity.
For the length of the longest non-observable prediction, the heuristic methods had slight
deviations in their values. The best heuristic achieved a MAE of 1.31 and RMSE of 2.06,
with a median AE of 1. The MAPE shows that these values were 115% higher than the
target on average, indicating poor predictive performance for the SD length metric using
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Figure 5.13: Regression metrics for NO SD count, longest SD
length, longest SD start index and longest SD end index prediction
at different O/NO split thresholds.

simple heuristics. When predicting the start and end indices of the longest SD event in the
NO part, the heuristic models showed similar performance. Apart from the R2 metric, the
best threshold was 5, with the two models providing almost identical predictions. For the
start index, the MAE was 0.38, MAPE 28%, median error 0; for the end index, the values
were slightly higher, with an MAE of 0.76, RMSE of 3.44, MAPE of 54%, and median AE
of 0.
Similar behavior was observed for Ridge Regression. While its metrics were generally more
favorable than those of the simple heuristics, it still showed noticeably worse performance
compared to XGBoost or MLP.
For the SD count prediction task, the best performing model was XGBoost. At the
best threshold, it shares the O/NO split 5 and 20 as potential candidates with minimal
differences. Threshold 20 takes the edge by having an R2 of 0.62 vs. 0.23. The resulting
model has a MAE of 0.03, RMSE of 0.13, and Median AE of 0.0047. Due to the target
distribution, MAPE tends towards infinity for this model as well. The average errors being
lower than the unit step (i.e., 1) of the target variable suggest that the model’s predictions
are very close to the actual values, with the error for at least half of the flows being
extremely low (as indicated by the low median AE). The R2 indicates a decent goodness
of fit.
The length of the longest SD event in the NO part shares a similar scenario, with XGBoost
yielding similarly good results at both O/NO split 5 and 20. Their MAEs are 0.272 and
0.289, RMSEs are 1.39 vs. 1.45, and Median AE are 0.032 and 0.045, respectively, while
the MAPE is 15% for the former threshold and 14% for the latter. The main difference
is again in R2, with threshold 20 at 0.49 vs. 0.19 for threshold 5. The larger of these two
still only indicates a moderate goodness of fit. The measured regression metrics suggest
that models trained at both O/NO split thresholds perform well on this task, with the
mean and median errors being considerably lower than the target unit.
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For the start and end indices of the longest SD event, the clear best model (except for
the R2 metric) is XGBoost trained on data at O/NO split threshold 5. MLP at the same
thresholds shares similar results as well. The metrics for the start index are 0.28 for MAE,
1.48 for RMSE, 16% for MAPE, 0.06 for median AE, and 0.11 for R2. For the end index,
the values are slightly higher, with a MAE of 0.51, RMSE of 2.50, MAPE of 27%, median
AE of 0.07, and R2 of 0.17. These values both show very poor goodness of fit, indicating
that new samples may not fit the model well. However, as previously noted, the R2 value
may be negatively influenced when used for the evaluation of an algorithm that builds
a sophisticated model. Focusing on the other regression metrics, both regression tasks
showed good performance in predicting the target, with the prediction of the start index
being slightly better.
The described results suggest that the best-fitted regression models (and even simpler
heuristics) are capable of predicting the target variables well, with errors staying well
below the unit steps of the target variables, hinting at a close-to-perfect predictive power.
However, it is important to note that the presented metrics are all skewed when class
imbalance is present. Since in this case there is a strong imbalance for flows with no SD
events in the NO part of the examined flows, the observed results essentially describe
the predictive power of the studied models for such flows (0 for non-observable SD count
and the length of the longest SD event, while -1 for the indices). As observed in the
classification task in Section 5.3.4, all models—including the heuristics—are highly capable
of identifying flows without non-observable SD events, and when such a scenario was
predicted, the results were mostly accurate. This behavior is reflected in the previously
described regression metrics. Despite the error values being lower than the unit step, this
is not necessarily the case for flows that actually have NO SD events, due to the imbalance
of SD-lacking flows skewing the averages towards those flows. To eliminate the influence
of these flows, I also plotted the same metrics incorporating only the flows that have SD
events in the target set. The corresponding plots are shown in Figure 5.14. The metrics
are encoded and presented in the same way as in the earlier figure, but here all axes follow
a linear scale. I omitted showing the R2 metric, as it was negative in all scenarios due to
evaluating the metric on a subset of fitted samples.
As expected, the results in these cases are significantly inferior to the values observed
earlier. The patterns in this limited analysis also differ greatly. Whereas the O/NO split
threshold of 5 showed the most promising results when considering all flows, it was out-
performed by most other thresholds in the majority of the studied metrics when focusing
only on flows with non-observable SDs. However, it is important to note that different
thresholds operated on SD events with distinct lengths, start, and end indices due to hor-
izontal separation. Another distinction is that the simple heuristic models either achieved
the best results or were on par with more sophisticated metrics.
For the non-observable SD count statistics, the best models were the two heuristic ones
at threshold 10, with an MAE of 0.30, RMSE of 0.62, MAPE of 25%, and median AE of
0. This implies that at least half of the flows with NO SD events had only one SD event,
as the heuristics only predict the presence of one anomaly. The low average error metrics
indicate that the majority of the flows followed this pattern. Given that the range of SD
event counts in the NO part for O/NO split threshold 20 is between 0 and 10 (as shown
in Figure 5.8d), these errors are relatively low.
The length of the longest SD event task showed varying results. While the heuristic
models at threshold 5 had the lowest MAPE, this was still at 68%, suggesting subpar
predictive performance, and was paired with higher error metrics. The best model and
threshold pairing in this case was XGBoost with threshold 15. Its MAE was 4.98, RMSE
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Figure 5.14: Regression metrics for NO SD count, longest SD
length, longest SD start index and longest SD end index prediction
at different O/NO split thresholds for flows that have SD events in
the target set.

7.44, with a MAPE of over 84% and a median AE of 3.05. As shown in Figure 5.9c, the
distribution of the length of the longest SD event is between 0 and 40 with a decreasing
distribution. Therefore, the measured metrics are comparable to this range and thus may
yield inaccurate predictions.
For the start and end indices, the heuristic models performed best again. The start index
is best predicted by threshold 15 of either heuristic model. The MAE is 4.8, while the
RMSE is 10.7. MAPE was measured at 26% with the median AE being 0. Like in the case
of the SD count statistics, the heuristic model works well for at least half of the degraded
flows, i.e., most flows have an SD event starting at the beginning of the NO part for this
threshold. The case for the SD end index prediction is similar, with the observable SD-
based heuristic taking the lead at threshold 10 for MAE and RMSE (at 10.16 and 15.80,
respectively), and at threshold 15 for median AE and MAPE (4 vs. 5 for threshold 10
and 37% vs. 44%, respectively). XGBoost’s prediction comes close to these models with
a similar distribution but slightly higher metrics. Considering the distribution of the two
targets (0 - 80 for start index and 0 - 85 for the end index, as shown in Figure 5.9), the
predictions may be inaccurate.
In conclusion, for the regression tasks, when identifying flows with no non-observable SD
events, all models perform well, with errors being lower than the unit step of all the
target variables. The more sophisticated models take a slight edge over the heuristics in
the studied metrics. However, when encountering flows with SD events in the NO parts,
the prediction results are vastly more inaccurate. In these cases, the heuristics seem to
perform better at predicting all metrics. This indicates that many of these flows have
just one SD event that starts at the beginning of the NO part and lasts no longer than
the MSL. However, the average error metrics measured were significantly higher and in
the order of magnitude of the target variable, suggesting a high likelihood of incorrect
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predictions. The more sophisticated models were unable to capture enough information
to predict more granular information about potential SD events in my analysis.

5.3.6 Feature Importance Analysis of the Best Classification Model

I analyse the best classification model to understand and identify the input features that
had the highest weight in the decision. Only the classification task is examined, as none
of the regression models in the examined tasks yielded satisfactory balanced results. To
this end, I calculate the Shapley Additive Explanations (SHAP) values for the XGBoost
model fitted on data following horizontal separation at threshold 10, which I previously
identified as the best classification model.
In binary classification tasks, SHAP values provide a comprehensive measure of feature
importance by indicating how much each feature contributes to the model’s output for
individual predictions. In this context, a positive SHAP value signifies that the feature
pushes the prediction towards the positive class (i.e., flows with non-observable SD events),
whereas a negative SHAP value indicates a push towards the negative class. The accom-
panying color gradient in SHAP summary plots, ranging from blue to red, represents the
value of the corresponding feature, with blue denoting lower feature values and red denot-
ing higher feature values. Purple colors mark the values that are close to the median or
mean of the feature values.
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Figure 5.15: Classification SHAP values.

Figure 5.15 shows the SHAP values for the top 20 input features (from top to bottom)
with the highest influence on the model decision in a summary plot. The most important
feature for classification proved to be the fsplit SD ratio, with higher ratios yielding higher
SHAP values (between 2 and 4), thus increasing the likelihood of a positive prediction.
In contrast, lower split ratios tend to correspond to negative SHAP values, incentivizing
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negative predictions, albeit with a much lesser impact (SHAP values of around -0.5).
Moderate ratios also tend to increase the likelihood, but with lower SHAP values. This
indicates that flows with a high fsplit SD ratio are likely to continue into the NO part as
a split SD. The higher the ratio, the greater the impact on the decision, while low ratios
(or 0) are less likely to have SD events. Since my heuristic model that uniquely used this
value did not match the effectiveness of XGBoost, the latter model required additional
features for better prediction.
The next top features are the first and last delay values in the O part of the flow, providing
information from both the beginning and end of the flows. The SHAP values for the former
show significant varied impacts. Low delays tend to have low SHAP values, both positive
and negative, and do not significantly influence model decisions. High delays correspond
to high SHAP values (between 1 and 2), while moderate delays have predominantly low
SHAP values with similar impact (around -2). In other words, high starting delays increase
the probability of a non-observable SD prediction, while moderate delays decrease it. The
last delay sample in the observable part has a clear influence on the model output, with
high delays pushing the model towards a positive prediction and lower values towards a
negative prediction, albeit with a lower impact, as the corresponding SHAP values range
between -1 and 1.
Beyond these, various application types influence the model prediction. Various TLS
Collaborative applications seem to reduce the likelihood of a positive prediction, while the
Social Network category tends to increase it slightly. The second highest absolute SHAP
value corresponds to the TLS.Google application type, with strongly negative SHAP values
(up to -4). Other aggregated delay and jitter features are also used, with higher values
(for mean, max, standard deviation) typically having positive SHAP values, while low
ones have negative SHAP values.

5.4 Discussion

5.4.1 Predictive Performance and Optimal Thresholds

My findings indicate that leveraging the observable portion of network flows to capture
latency, jitter, and SD events, alongside the carried application type, demonstrates good
predictive performance for identifying SD in the non-observable (NO) part. This research
shows that analyzing 10 delay samples and other derived features strikes a balance between
accurately predicting upcoming behavior and minimizing the number of packets processed
on the slow path. While examining 5 delays showed subpar performance and increasing
the threshold further led to only marginal improvements, the true optimal threshold for
the O/NO split likely lies between these values. Further analysis is required to study the
predictive performance between O/NO split thresholds 5 and 10.

5.4.2 Focus on LAN Delays

A key aspect of this study was the focus on LAN delays, as network providers cannot
influence WAN behavior. I tested the predictive performance of LAN delays by splitting
these delays into observable and non-observable parts. However, determining the best
packet count for the O/NO split does not guarantee a consistent amount of LAN delays
in the observable portion of the flows. To extract the required amount of LAN delays for
at least half of the flows, we may need up to 4 times the captured packets, and up to
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8 times for 80% of the flows. This translates to between 40 and 80 observable packets,
which may exceed the resource capabilities of some devices or negate the benefits of fast
path processing for short flows. Therefore, an important future direction is to examine
the predictive performance of flows with a variable amount of delays when cutting at a
strict O/NO packet limit.

5.4.3 Variable Delay Thresholds

My results also suggest that instead of a single packet threshold, it may be beneficial to
keep the flow in the observable part until the required amount of delays are collected,
then transition it to the fast path. This approach would mean some flows might only
be examined up to their 20th packet, while others might require over 80 packets in the
slow path. A comprehensive assessment is necessary to evaluate the resource utilization
implications of this approach on the router. Additionally, studying the use of adaptive
limits for flows with different characteristics, such as those belonging to distinct application
categories, holds potential.

5.4.4 Model Performance and Limitations

In the experiments I execute, the XGBoost and MLP models were the best in extracting the
necessary information for classification performance. While XGBoost can use raw data,
MLP requires scaled input, which may skew the flow feature input out of the original
range in production environments. Therefore, I prefer XGBoost, which also achieved
slightly better performance in my testing. However, for the regression tasks, the models
only matched the classification models’ capabilities, reliably identifying flows without non-
observable SD events. The heuristics performed better in predicting actual metrics for
flows with SD events in the NO part, albeit with considerable error. Using classification
and regression models in an ensemble might improve results, but additional information
is likely needed to pinpoint SD length and start and end indices more accurately.

5.4.5 Dataset and Practical Considerations

This study used a dataset measured in a university dormitory environment with network
traffic patterns indicative of home environments, suggesting potential transferability. If
model retraining becomes necessary due to changing traffic patterns, it can be performed
offline with a similar amount of captured flows. Model inference requires substantially
fewer resources, making it feasible even for resource-constrained home network routers.

5.4.6 Future Directions

My results show that the fsplit SD ratio is a highly influential metric, indicating the presence
of SD events at the beginning of the NO part. The trained model performs well in
identifying these events but may miss others occurring beyond this point. To improve
detection of these SDs and the accuracy of start and end index localization, we may need
to harness additional information, such as the behavior of subsequent flows that have not
yet transitioned to their respective NO parts. Tracking the delay and jitter behavior of
these flows and their relative timing to the original flow may help better pinpoint SD events
in the NO part, refining classification performance and improving regression metrics. This
approach could also lower the required amount of LAN delay analysis, yielding a smaller
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optimal O/NO split threshold. Degraded flows could be redirected back to the slow path
for potential QoS label application and preferential treatment by the CPU. My work
provides a foundation for this potential future direction.
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Chapter 6

Conclusion

This thesis has explored the identification and analysis of service degradation events using
LAN data from a university dormitory setting, aiming to develop a methodology that
could be applicable to a variety of network environments. My approach, centered on
the detection of statistically significant deviations in network performance (specifically,
extreme delays and jitter), has demonstrated potential applicability not only in similar
institutional settings but also in residential and possibly enterprise networks.
The robustness of the methodology was validated by applying it across different locations
and at different times, with results showing minimal deviation, thus underscoring the
effectiveness of the SD event identification process. This consistency highlights the model’s
potential as a reliable tool for network administrators to preemptively address and manage
network service quality issues. While my findings offer promising directions for network
service management and SD detection, they also pave the way for subsequent studies to
refine and expand on the groundwork laid here.
Future work considers extending the data collection period in non-academic residential
settings to validate the method’s efficacy in these contexts further. Exploring the scala-
bility of the approach to accommodate larger or more complex network settings is also set
as a future work.
In the second part of the thesis I focused on leveraging early flow features to predict service
degradation in network flows after they transition from an observable state to a non-
observable state, a method I call intra-flow service degradation detection. By capturing
information from the initial part of a flow, I aimed to infer the behavior and characteristics
of the flow after it moves to a fast-path processing but less observable state.
My analysis centered on the Packet Inter-Arrival Time metric, particularly those indicative
of LAN side latency. I found that capturing the first 5 to 20 delays effectively covers most
flow changepoints and encapsulates flow behavior. This range strikes a balance between
gathering sufficient information and minimizing the number of packets processed on the
slow path.
In evaluating my method, I tested simple heuristics and more sophisticated models for
predicting SD events in the non-observable part of the flow. The XGBoost model emerged
as the best performer, particularly at the O/NO split threshold of 10, achieving an F1-score
of 0.74, a balanced accuracy of 0.84, and an AUROC of 0.97. Key features influencing
this model included the split ratio of an SD event and the first and last delay values in
the observable part.
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For regression tasks aimed at predicting specific SD-related metrics, my models were
primarily effective in identifying flows without SD events in the non-observable part.
However, they were less accurate for flows with SD events, highlighting the challenge
of predicting more granular details.
The findings suggest that the optimal O/NO split packet threshold lies between 4 to 8
times higher than the delay count needed to capture the necessary delays. An adaptive
threshold based on flow behavior could offer further improvements.
In summary, this thesis presents a statistical framework for identifying SD in network
flows, and demonstrates the feasibility and effectiveness of using early flow features to
predict SD in network flows after they become non-observable. Future work should focus
on refining the adaptive thresholds, exploring inter-flow information for better SD event
detection, and validating these methods in different network environments to enhance
their robustness and applicability.
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