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Kivonat

Önvezető járműrendszerek esetében a deep learning folyamatok nagy mértékben támasz-
kodnak a kiegyensúlyozott és változatos adathalmazra - aminek összeállítása komoly kihí-
vást jelent, hiszen némely minták rendkívül ritkán fordulnak elő, pl. különleges időjárási
körülmények vagy pedig speciális objektumkompozíciók. Mély neurális háló alapú meg-
oldások, kifejezetten a nem rég teret nyerő generatív hálózatok orvosolhatják ezen prob-
lémát. A területhez tartozó egyik legfontosabb fejlesztés a diffúzió alapú megközelítés,
mely zajból állít elő új képeket. Túlnyomórészt ezen megoldások a ’text2image’ metódust
alkalmazzák, vagyis szövegbemenet segítségével teszik vezérelhetővé a generálási folyama-
tot. Előrehaladott képességeik ellenére azonban ezek a modellek még nem biztosítanak
teljesen explicit kontrollt a generált tartalom felett, különösen olyankor amikor az objek-
tumok relatív helyzetét kell meghatározni egy adott képen. A dolgozat célja az volt, hogy
szemantikus szegmentációs vezérlésen alapuló generatív modellek alkalmazásával nyújt-
son megoldást erre a korlátozásra. Ezzel a megközelítéssel tetszőleges önvezető domainbe
tartozó jelenetek generálhatóak, ezáltal bővítve a hiányos adathalmazokat és javítva a
modellek teljesítményét.
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Abstract

In the autonomous mobility industry, deep learning pipelines are critically dependent on
the balance and variety of training data. Achieving this balance is particularly challenging
due to the scarcity of data in rare scenarios, such as unique weather conditions or specific
traffic configurations. Deep learning-based methods, particularly those within the emerg-
ing field of generative AI, hold potential for advanced solutions. A key development in this
domain is the diffusion-based approach, capable of generating novel images from a ran-
dom noise distribution. Predominantly, these models utilize a ’text2image’ methodology,
enabling the generation of images via textual prompts. However, despite their advanced
capabilities, these models do not yet provide complete explicit control over the generated
content, particularly in terms of the relative positioning of objects within images. The
goal of this thesis was to propose a solution to this limitation by applying semantic seg-
mentation mask-guided diffusion models. Through this approach, arbitrary self-driving
scene setups can be produced, therefore enriching insufficient datasets and improving the
performance of neural networks.
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Chapter 1

Introduction

Deep neural networks have revolutionized image generation, finding widespread applica-
tion in fields such as arts [1], entertainment, medical science [2], and the development of
autonomous driving systems [3][4]. A particularly captivating branch of generative AI is
the emergent diffusion-based [5] approach. This method hinges on training a model adept
at noise prediction, capable of iteratively crafting images from a standard noise distribu-
tion during inference. As many advancements have aimed to enhance the controllability
of image generation, cutting-edge solutions now mostly employ a ’text2image’ approach,
enabling systems to generate images guided by textual prompts [6].

However, two challenges stand out: advanced models are vast, potentially putting them
out of reach for average users due to their training and deployment complexities. Con-
ventionally, these models are accessible via online API1s and platforms, but such avenues
rarely provide a transparent view of the inner workings or the ability to fine-tune on
custom datasets. Secondly, while textual prompts are innovative, they are yet to offer
complete explicit control over generation, especially when specifying the relative position-
ing of objects within an image. Although some fields might not prioritize this feature,
many could significantly benefit from enhancements in this area.

Autonomous driving systems is a domain where there is an insatiable demand for diverse,
and sometimes very specific training data. The collection process, especially for rare
scenarios such as pre-accident object positioning, poses challenges not only in terms of cost,
but also in feasibility, therefore acquiring such recordings could be a pivotal achievement.
Textual prompts may help to generate images where the composition is simple, e.g. ’a
red car at the cross-roads’, but when there is a particular idea about the scene setup, e.g.
10 cars with multiple colors at different directions around likewise interacting humans, a
pure text-based description is hardly applicable.

Semantic segmentation maps could mean a more reasonable alternative, since they possess
a greater descriptive power on the pixel-level. The goal is to facilitate automotive data en-

1Application Programming Interface
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richment through offering control by mask-guidance. Classes occuring on groups of image
pixels may be influenced directly in this manner, while also enabling multiple utilization
possibilities of the model: Companies typically possess at least a minimal amount of train-
ing data containing semantic segmentation masks. By the help of a mask-guided diffusion
model, these could be used ’out-of-the-box’, generating multiple versions (e.g. colors of
cars change) of the same scene setup, therefore also reducing labeling costs. The initial
masks may be further modified (e.g. via basic image editing tools), providing even more
unique inputs for the model. To illustrate the effectiveness of the method, even handmade
drawings may be used as inputs.

In my thesis, I investigate the possibilities of using semantic segmentation mask-guided
models, trained specifically for self-driving environment data generation. Two main dis-
tinctive approaches are explored: training a model from scratch and utilizing pre-trained
large diffusion models. I leveraged the Berkeley Deep Drive dataset [7], which comprises
traffic participant frames annotated with semantic segmentation. The outcomes validated
the concept of using such masks for scene control, while highlighting the method’s potential
for scalability. Furthermore, the from-scratch implementation is designed to be compact
and minimal, enabling everyday users to explore the generative domain and encouraging
them to adapt this approach to address their unique challenges and ideas.2

2Repository available at https://github.com/kajc10/semseg-guided-diffusion (accessed:
2024.05.31.)
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Chapter 2

Theoretical Background

2.1 Basic image augmentation methods

Basic data augmentation methods can typically be divided into two principal categories:
photometric and geometric augmentations [8].

Photometric augmentations - typically referred to as color augmentations - do not modify
the intrinsic structure of the data, but nonetheless, produce a visually distinct output.
Some of the more common ones in this category include contrast adjustments, brightness
modifications, saturation enhancements, and hue shifts.

Although these augmentations provide diversity in the visual appearance of the data,
they primarily act on the pixel values. Therefore, they do not facilitate any structural
modifications to the underlying scene of the image; in other words, the mask remains
unchanged (see Figure 1). Moreover, special attention must be paid to maintaining the
realistic nature of the images; for example, human skin should not appear purple.

Figure 1: Color augmentation examples

On the other hand, geometric augmentation methods introduce structural changes to the
image, thereby altering the composition and layout of the scene. Note that, in parallel, if
available, relating segmentation masks have to be modified as well. Some commonly used
geometric augmentations are resizing, cropping, flipping (both horizontal and vertical),
and rotating (see Figure 2). By employing these techniques, the objects’ relative positions
within the image can be altered, which can lead to more diverse scene compositions and

3



enhance model generalization. As before, special care must be taken to preserve the
realism of the images, especially during flipping and rotating operations.

Figure 2: Geometric augmentation examples

In a standard dataloader, these augmentation functions can be applied with a probability
factor p, allowing the model to learn from both the original and the modified data concur-
rently. Furthermore, the parameters governing these augmentations, such as the degree of
rotation or the intensity of brightness change, can be fine-tuned to optimize the model’s
performance. Adjusting these parameters is often an empirical process, influenced by the
nature of the dataset and the specific problem at hand.

For both photometric and geometric methods, it is worth noting that while they serve as
a means of data enrichment, they do not inherently produce entirely new scene configura-
tions. The primary advantage of using these methods is to reduce the model’s tendency to
overfit by providing variations of the same sample. To create explicit scene configurations
or generate novel content, there is a need to pivot towards deep learning-based methods,
which are equipped with more advanced tools for such purposes.

In the subsequent sections, deep learning-based augmentation and generation methods
will be addressed, focusing on their capabilities and potential to enrich datasets further.

2.2 Main types of generative models

Generative deep learning models are dedicated to understanding and replicating the in-
herent distribution of given data. By effectively learning the ’essence’ of a dataset, these
models are capable of generating new data samples that can be considered as drawn from
the same distribution as the training data. The preservation of the intricate relation-
ships and patterns in the original data can often lead to insightful and creative synthetic
outputs. Among the diverse list of generative models for computer vision tasks, three
branches are particularly noteworthy due to their distinct capabilities and broad appli-
cations: Generative Adversarial Networks (GANs) [9], Variational Autoencoders (VAEs)
[10], and diffusion models [11].
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2.2.1 Generative Adversarial Networks

GANs operate on the concept of a zero-sum game between two components: a generator
and a discriminator. The generator creates synthetic data, while the discriminator evalu-
ates this data against the real dataset. The aim is for the generator to produce data that
the discriminator cannot distinguish from the real dataset. This adversarial process drives
the generator to create increasingly realistic data, useful for creating diverse and complex
scenarios. However, the training of GANs can be challenging due to issues like training
instability and the phenomenon known as mode collapse [12]. In this situation, the gen-
erator starts to produce a restricted range of samples, limiting its diversity. Furthermore,
it is essential to note that GANs do not offer a direct representation of the data’s density
function [9] [13], which could constrain their utility in assignments that demand in-depth
data exploration.

2.2.2 Variational Autoencoders

VAEs [14] assume that the data is generated by some latent (hidden) variables and aim
to model the data distribution explicitly. A typical VAE comprises an encoder, which
translates the input data into a latent space, and a decoder, which then recreates the
data from this latent representation. For clarification, the ’autoencoder’ phrase is used
due to the model’s encoder-decoder structure. Owing to their probabilistic nature, VAEs
excel at managing uncertainty and creating new data efficiently. These models can be
particularly advantageous when it is vital to understand the data and manipulate the
latent variables [15]. However, due to some simplifying assumptions in their design, the
samples generated by VAEs may lack the sharpness or realism found in those produced
by Generative Adversarial Networks (GANs) [16].

2.2.3 Diffusion models

Diffusion models [5] represent another distinctive approach for data generation. Tradition-
ally, these models propose a stochastic process to gradually transform the data distribution
into a known distribution, typically Gaussian, through a sequence of small, noise-adding
steps. This diffusion process can be reversed to generate new data samples. Diffusion
models do not require an explicit likelihood function and can model complex data dis-
tributions, which offer a great deal of flexibility. Although they can be computationally
intensive during the generation process, the diversity and quality of the data they generate
could greatly enhance the robustness of deep learning models that are lacking diverse data
[17].

While there have been developments that transition the diffusion process to the latent
space of an autoencoder [18] / VQ-autoencoder [19] - commonly termed as ’Stable Dif-
fusion’ [20] - using expansive network architectures, and some recent advancements [21]
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[22] have even moved away from the classical noise introduction strategy to predicting VQ
(Vector Quantization) [23] tokens directly, the introduction in later Section 2.3 adheres to
the foundational noise prediction approach of the original diffusion models.

2.2.4 Generative learning trilemma

After addressing the potential methods, a design choise had to be made. The generative
learning trilemma [16] (see in Figure 3) provides guidance in deciding which branch is
most suitable for a given task. The three features taken into consideration are quality,
diversity and speed. GANs are able to produce high quality samples fast, but lack diversity.
VAEs excel at fast sampling and model coverage, but fail to produce high quality samples.
Finally, diffusion models are adept at producing diverse, high quality samples, at the cost
of speed.

The current goal is to aid automotive data enrichment, for which quality and diversity are
crucial, but fast sampling is not, since the model will not be deployed to an edge device.
After evaluating the possibilities based on the generative trilemma, the optimal choice was
to use diffusion models.

Figure 3: Generative learning trilemma1. Source: Figure 1 from
’Tackling the Generative Learning Trilemma with De-
noising Diffusion GANs’ [24]

2.3 Denoising Diffusion Probabilistic Models

Denoising Diffusion Probabilistic Models (DDPM) [5] constitute a popular basis for
diffusion-based generative models, and they serve as the foundation for the experiments
in my study. This subsection aims to present the primary concepts behind DDPM and
to briefly explain its functioning. For a deeper understanding and more technical details

1https://developer.nvidia.com/blog/improving-diffusion-models-as-an-alternative-to-gans-part-1/ (ac-
cessed: 2023.11.01.)
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- especially regarding mathematical derivations - the reader is encouraged to consult the
original paper and supplementary explanatory blog posts [25][26][27]. I would like to high-
light that the following technical summary is processing the content of an excellent video
summary [28] about the topic.

DDPM’s main approach originates from the concept proposed by the authors of Deep
Unsupervised Learning using Nonequilibrium Thermodynamics [11], who articulate their
methodology as follows:

’The essential idea, inspired by non-equilibrium statistical physics, is to sys-
tematically and slowly destroy structure in a data distribution through an iter-
ative forward diffusion process. We then learn a reverse diffusion process that
restores structure in data, yielding a highly flexible and tractable generative
model of the data.’

Taking inspiration from these insights, the authors of DDPM demonstrate that such model
can be used for effective data synthesis.

Although DDPM might initially appear complex, the underlying concept is relatively
straightforward. An x0 image is taken as input, and Gaussian noise is progressively added
over a series of T steps, leading to a significantly distorted version. Subsequently, a
neural network is trained with a specific objective: for a given noisy image at timestep
t, it should identify the amount of noise present at that step. The overarching aim is
to systematically reverse the noise, moving from the heavily distorted image back to the
original. Once the model is adeptly trained, the process can begin with an image that is
purely noise. By consistently feeding this noisy image into the network and subtracting
its denoising predictions, the noise steadily fades, revealing a synthesized image by the
end of the iterations.

The following subsections offer further clarification on the mechanics of this forward and
backward process.

2.3.1 Forward diffusion - adding noise

The forward process is responsible for gradually applying noise (sampled from a normal
distribution) over lots of steps (authors used 1000, this is what I applied as well) to an x0

data sample until it turns into complete noise. This can be formulated as a Markov chain2

of T steps, illustrated in Figure 4. The distribution of the noised image can be described
as:

q(xt|xt−1) = N (xt;
√

1 − βtxt−1, βtI) (2.1)

Here t is a timestep (1-T), x0 is a data sample from the real data distribution q(x)(x0 ∼
q(x)), βt is variance (0-1) and I is the Identity matrix. The βt variance can be fixed as a

2https://en.wikipedia.org/wiki/Markov_chain (accessed: 2023.11.02.)
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constant or scheduled over the T timesteps. In the original DDPM paper linear scheduler
is used, increasing from β1 = 0.0001 to βT = 0.02. Based on literature [29], a cosine
scheduler is more effective, therefore I decided to rather use that. Note that q(xt|xt−1) is
still a normal distribution defined by the mean (

√
1 − βtxt−1) and variance (βtI).

Figure 4: Forward diffusion

With the help of the so called ’Reparameterization trick’3, a sampled image xt can be
expressed as:

xt =
√

1 − βtxt−1 +
√

βtε (2.2)

Fortunately, this can be further derived into a closed-form formula. This way we can
directly generate a noisy image for an arbitrary timestep t in a single step, thus making
the process much faster. After defining αt, α̂t and ε as:

αt = 1 − βt

ᾱt =
t∏

i=1
αi

ε ∼ N (0, I)

(2.3)

The formula can be written as :

xt = √
αtxt−1 +

√
1 − αtε

= √
αtαt−1xt−2 +

√
1 − αtαt−1ε

= √
αtαt−1αt−2xt−3 +

√
1 − αtαt−1αt−2ε

...

= √
αtαt−1...α1α0x0 +

√
1 − αtαt−1...α1α0ε

=> xt =
√

ᾱtx0 +
√

1 − ᾱtε (2.4)
3https://theaisummer.com/latent-variable-models/#reparameterization-trick

(accessed:2023.11.02.)
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2.3.2 Reverse diffusion - removing noise

Noising an image is fairly simple via the closed-form formula. Doing the opposite and
removing the noise is a more complicated task. Directly predicting x0 could be an option,
but authors found that this leads to worse sample quality than their other proposals. A
normal distribution needs mean and variance (N (µ, σ2)), but the variance can be fixed;
therefore, it is enough to predict the mean of the Gaussian distribution at each
timestep.

To make it computable, the Variational Lower Bound4 is applied. For further mathemat-
ical derivation and explanation, see [27]. Mean Squared Error (MSE) can be computed
between µ and predicted µ; however, the objective of predicting the mean can be refor-
mulated into the objective of directly predicting the noise.

This way, a simplified objective (referred to as such in the original paper) can be written
as:

Lsimple = Et,x0,ε[||ε − εθ(xt, t)||2] (2.5)

When a network is capable of predicting the current noise at a given t, the process can
be applied iteratively. Noise is predicted, then a portion of it is removed from the noisy
image, thus forming a slightly less noisy image. When starting from t = T , by t = 1, a
clean, novel image is created.

Figure 5 illustrates this process. The diagram shows how a noisy image (right) is processed
through the diffusion model (U-Net) at timestep t to predict the noise, which (a portion
of it) is then subtracted to yield a less noisy image (left) at t-1. This iterative process
continues until the image is denoised. The arrows in the diagram indicate the flow of
images through the model, highlighting the steps of noise prediction, removal and the
iterative manner of the process.

Figure 5: Reverse diffusion process. The right image is the noisy
input, the U-Net model predicts the noise, a portion of
it is subtracted to obtain a less noisy image on the left.
This process is repeated iteratively.

4https://yunfanj.com/blog/2021/01/11/ELBO.html (accessed: 2023.11.02.)
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2.3.3 Complete pipeline

The authors of DDPM provided the following algorithm to define the complete training
pipeline:

Algorithm 1 Training
1: repeat
2: x0 ∼ q(x0)
3: t ∼ Uniform({1, . . . , T})
4: ϵ ∼ N (0, I)
5: Take gradient descent step on

∇θ||ϵ − ϵθ

(√
ᾱtx0 +

√
1 − ᾱtϵ, t

)
||2

6: until converged

An image is sampled from the training dataset, along with timesteps and noise from a
normal distribution. Noised variations of it are generated at each timestep t via forward
diffusion. The reformulated equation (2.4) can be applied as described above. Then the
model takes xt and t as input and predicts the noise that was added to the image. MSE5

loss is calculated between the predicted and the original noise. Through optimization for
this loss, the model learns to predict current noise present in an image at timestep t.

A trained model can be used for generating new samples, using Algorithm 2.

Algorithm 2 Sampling
1: xT ∼ N (0, I)
2: for t = T, . . . , 1 do
3: z ∼ N (0, I) if t > 1, else z = 0
4: xt−1 = 1√

αt

(
xt − 1−αt√

1−ᾱt
ϵθ(xt, t)

)
+ σtz

5: end for
6: return x0

Here ϵθ(xt, t) denotes the model’s output for xt (sampled from a normal distribution) and
t. The output is the predicted noise on noisy image at timestep t.

Clarifying point 3-4: It should be noted that extra noise is not added when t = 1. Thus,
the denoising function has two forms:

t > 1:
xt−1 = 1

√
αt

(
xt − βt√

1 − ᾱt
ϵθ(xt, t)

)
+
√

βtϵ (2.6)

t = 1:
xt−1 = 1

√
αt

(
xt − βt√

1 − ᾱt
ϵθ(xt, t)

)
(2.7)

5Mean squared error - https://en.wikipedia.org/wiki/Mean_squared_error (accessed: 2023.11.02.)
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In the equations above, ϵ is the noise term, αt and βt are parameters (pre-defined, not
trainable) at timestep t, and ᾱt is a cumulative product of α terms up to t. Equations
(2.6) and (2.7) describe the update rules for xt−1 depending on the value of t. Equation
(2.6) applies when t > 1, where extra noise ϵ is added, whereas Equation (2.7) applies
when t = 1, where no extra noise is added.

For a more comprehensive understanding of the topic, see supplementary Code listings in
the Appendix.

2.3.4 Classifier Free Guidance

In the field of generative diffusion models, producing specific outputs (controlled genera-
tion) is often challenging. Classifier Guidance [30] proposed an initial approach to tackle
this problem: train a separate image classifier and use its gradients to guide the image
generation process towards the desired output. However, this strategy incurs a significant
computational overhead, since it requires training an extra model.

Classifier Free Guidance (CFG) [31] offers a more streamlined solution: without the need
for supplementary networks, it enables precise image synthesis via a process known as con-
ditioning. It circumvents the need for an additional image classifier by jointly optimizing
a single neural network for dual tasks simultaneously. In this context, an unconditional
model generates output based solely on the learned data distribution, without specific
conditions or classes. In contrast, a conditional model produces output based on both the
learned data distribution and specific conditioning. This conditioning can be integrated
through a minimal architectural modification. An extra conditioning parameter is passed
to the network as well - which may be drawn for varying fields, further explained at Section
2.3.5.

Central to CFG is the bridging between the outputs of the conditional and unconditional
models, a concept captured in the CFG paper’s Equation 6. See Equation 2.8.

ϵ̃θ(zλ, c) = (1 + w)ϵθ(zλ, c) − wϵθ(zλ) (2.8)

This extrapolation allows for a seamless blend between the two modes, enhancing the
model’s versatility. The model is parameterized as pθ(z|c), leveraging the same score
estimator but incorporating the identifier c as a component of its input. For unconditional
updates, c is set to ’None’. By randomly assigning c to the unconditional class identifier
during the training phase, CFG concurrently masters the creation of both generalized
samples of the distribution and controlled outputs. This duality empowers precise image
synthesis with reduced computational needs.

A pivotal element in this process is the guidance weight, denoted by w. It modulates
the balance between the conditional and unconditional outputs, ensuring the generated
output aligns with the desired condition while maintaining authenticity. However, it is
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worth noting a potential drawback of CFG: during the inference step, two forward passes
through the network are required (one unconditional and one conditional pass), which
may have implications on efficiency and processing speed.

2.3.5 Guiding methods

Diffusion models offer various ways to control their outputs. One of the most versatile and
intuitive methods for guidance is using textual descriptions. With models like OpenAI’s
CLIP [32], there is an effective fusion between vision and language models. CLIP can guide
generative diffusion models by providing textual prompts. This type of guidance, known
as classifier guidance, leverages the model’s ability to measure the similarity between an
image and a caption. By maximizing this similarity using its gradients, CLIP effectively
steers the generative process to produce outputs that align closely with the provided
textual description.

These prompts can vary from simple attributes like ’sunset’ to complex descriptions like
’a tranquil beach during sunset with children playing’. Such models essentially learn
the intricate relationship between visual and textual data, enabling more descriptive and
customized image generation.

Using class labels is another predominant method for guiding image synthesis. By asso-
ciating a specific label with the image data during training, the model can then generate
images corresponding to that class upon request. For instance, a model trained with labels
like ’cat’ or ’dog’ can produce images of cats or dogs respectively when provided with the
single class label.

Rather than using text or class labels, some techniques apply another image as a source
of inspiration or reference [33]. In this method, an input image or a portion of an image
is provided to the model, which then modifies, enhances, or recreates it based on the
learned distribution and the given reference. This technique is particularly useful in tasks
like image-to-image translation, where the model can convert an input image from one
domain to another. Examples include translating sketches to realistic photos, converting
daytime images to nighttime scenes, or generating colorized versions of black-and-white
photos.

Low-resolution images may also be used as conditioning inputs, especially when the goal is
to produce upscaled or ’super-resolution’ [34] versions of the images. These low-resolution
images serve as references during the generation process, aiding the model in understanding
the fundamental structures and patterns of the original content. By using them as a
baseline, the model is guided to enhance and refine details, ultimately resulting in a high-
resolution image that retains the essence of the original while boasting superior clarity
and definition.
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Another promising technique for guiding the outputs of diffusion models is through se-
mantic segmentation masks. While the foundational concept of using semseg (semantic
segmentation) masks to guide generative models might have precedence in literature [35],
its application in the automotive-specific domain remains largely unexplored. Moreover,
the methods for incorporating such masks can vary significantly, and a standardized ar-
chitecture has not yet been established. Hence, experimentation in this field remains both
relevant and warranted.

2.4 Introduction to popular methods

2.4.1 Stable Diffusion

Stable Diffusion (SD) is a state-of-the-art generative model that has garnered significant
attention for its ability to generate high-quality images from textual descriptions efficiently.
This model is based on a latent diffusion model framework, which innovatively integrates
the principles of VAEs and diffusion-based generative processes. Stable Diffusion excels in
high-resolution image synthesis while maintaining a lower computational cost compared
to other generative models such as GANs.

A key feature of Stable Diffusion is its encoder-decoder framework, which efficiently cap-
tures and recreates complex image details. Initially, the model compresses data into a
latent representation using a Variational Autoencoder (VAE) [20]. The diffusion process
then takes place within this latent space - utilizing a U-Net-based architecture - signifi-
cantly reducing computational load. Finally, the model expands the latent representation
back into the pixel space, creating high-quality imagery.

While Stable Diffusion has demonstrated high performance in both speed and quality,
it still has limitations, particularly in controlling specific elements within the generated
images. Although the model can generate images that closely align with text prompts, con-
trolling the exact position, orientation, or interaction of objects within the image remains
challenging (see Section 2.4.1.1). This limitation is particularly significant in domains
requiring precise control, such as autonomous driving, where accurate depiction of traffic
scenarios is crucial.

In the context of this thesis, exploring Stable Diffusion provides valuable insights into
the capabilities and limitations of current state-of-the-art generative models in producing
controlled imagery. By understanding these aspects, challenges associated with generating
detailed and precise images - necessary for applications in self-driving environments - can
be better addressed.
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2.4.1.1 Limitations

The mentioned lack of controllability can be better understood on some minimal samples.
Consider Figure 6 as the baseline image. Then see Figure 7 for an example generated
using Stability AI’s Stable Diffusion6.

Figure 6: Reference image for comparison

Figure 7: Stability AI’s Stable Diffusion - Generated image by
prompt: ’view from inside car, grey car in front, red
firetruck front right, high tree front left, tall buildings
in the background’.

Despite the impressive quality seen in Figure 7, the generated image does not perfectly
reflect the scene setup described in the prompt.

A human is likely to interpret images differently than an AI model, therefore an additional
experiment can be conducted. Utilizing ChatGPT’s7 ’image2text’ feature, it was asked to
generate an input prompt for the ’text2image’ generator models.

6https://huggingface.co/spaces/stabilityai/stable-diffusion (accessed: 2023.10.30)
7https://chat.openai.com/ (accessed: 2023.11.01.)
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Figure 8: Input prompt generated via ChatGPT
Using the yielded prompt image synthesis was attempted again, but as before, an identical
output could not be achieved, see Figure 9.

Figure 9: Image generated by prompt: ’A bustling city street lined
with tall modern skyscrapers. Vehicles, including a gray
car and a red bus, are navigating the road. The overcast
sky looms above, casting a muted light over the scene.
The atmosphere is typical of a busy urban setting.’

The examples highlight that relying solely on prompts with large, generalized models does
not offer the fine-grained control and accuracy that a specialized semseg-guided model can
provide.

2.4.2 ControlNet

ControlNet [35] is an advanced extension designed to enhance the functionality and preci-
sion of pre-trained Stable Diffusion models, enabling more directed and specific generative
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outcomes. Traditional diffusion models, while powerful, often produce generalized results
that lack the ability to incorporate specific directives or conditions. ControlNet addresses
this limitation by allowing users to exert precise control over the generated images through
new conditional inputs, such as human poses, edges, or depth maps, without modifying the
original model, ultimately transforming simple prompts into highly controllable, detailed
and structured visuals.

At its core, ControlNet employs a unique approach by creating two versions of a large diffu-
sion model’s weights: a ’trainable copy’ and a ’locked copy’. The locked copy preserves the
network’s capabilities learned from analyzing billions of images, while the trainable copy
is used to learn conditional control on specific tasks using targeted datasets. These two
neural network blocks are connected through ’zero convolution’ layers [35] — essentially
1×1 convolutions with both weight and bias initialized to zero. Starting with weights set
to zero, they are gradually optimized during training. Moreover, zero convolution avoids
introducing new noise to deep features, resulting in faster training times compared to ini-
tializing new layers from scratch. See Figure 10 for the building blocks of the composed
architecture.

Overall, ControlNet significantly expands the creative possibilities of Stable Diffusion by
allowing users to define specific attributes and structures in their generated images, with
a shortened training time compared to fine-tuning. Whether for artistic purposes, precise
image synthesis, or research applications, ControlNet offers a robust and flexible toolset
for enhancing AI-driven image generation. Unlike training from scratch, when fine-tuned,
ControlNet can leverage information not only from the training dataset but also from the
data Stable Diffusion was originally trained on. Based on these advantages, ControlNet
was chosen to be highly utilized in this thesis.
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Figure 10: Stable Diffusion’s U-Net architecture connected with
a ControlNet on the encoder blocks and middle block.
The locked, gray blocks show the structure of Stable
Diffusion. The trainable blue blocks and the white zero
convolution layers are added to build a ControlNet.
(Figure 3 from [35])
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Chapter 3

Goal

Current state-of-the-art generative models, such as Stable Diffusion XL1 and Midjourney
v52, excel at text-driven guidance. However, their proficiency decreases when precise
object positioning is required, which is critical in domains such as autonomous mobility.
The generation of detailed and accurate traffic scenes for deep learning algorithms in these
applications demands a higher degree of control than what broad-spectrum generative
models can currently offer.

The goal of this thesis is to address this challenge by applying semantic segmentation
mask-guided models, specifically trained for automotive data generation. These mod-
els should not only grasp the intricacies of vehicular scenes but also provide a precision
level that generic generative models struggle to achieve. The final goal is the creation
of a synthetic dataset that effectively helps neural network performance on an Advanced
Driver-Assistance System (ADAS) task.

The transformative potential of the proposed method will be demonstrated through a
systematic series of experiments. There will be two main approaches:

1. A diffusion model with a U-Net [36] based architecture will be implemented and
extended to enable control via semantic segmentation masks.

2. A ControlNet will be trained with mask guidance for a pre-trained Stable Diffusion
model.

The two models will be trained and then evaluated both metrically and visually. Their
utilization possibilities will be showcased through multiple examples:

1. Image generation with semantic segmentation mask guidance.

2. Image generation with manually modified masks.
1https://stability.ai/stable-diffusion, (accessed: 2023.10.29.)
2https://docs.midjourney.com/docs/model-versions, (accessed: 2023.10.29.)
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3. Image generation via hand-made drawings.

Both methods will utilize a preprocessed traffic participant dataset. Novel images will
be generated from these two distinct approaches. Generations from the more efficient
solution should be used to demonstrate how newly synthesized images can improve a
neural network’s performance on an ADAS downstream task.

Subsequent chapters will detail the essential steps to achieve the declared objectives, en-
compassing dataset preparation, baseline training, model design with guidance integration,
ControlNet configuration, and an in-depth evaluation of the results.
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Chapter 4

Methods and Implementation

The entire work consists of three main phases: novel image generation, evaluation of
generation quality and the assessment of the enriched dataset’s effects on an ADAS task.

During the first phase, two different methods were employed for image generation: one was
a conventional model implementation and training from scratch, while the other involved
training a ControlNet for a pre-trained Stable Diffusion model. An enriched dataset can
be constructed by inferring with either solution. See the combined phase 1 and 2 pipeline
in Figure 11.

Figure 11: Implementation - combined phase 1 (data generation)
and 2 (evaluation) pipeline

In the final third phase, an ADAS task was selected and trained on both a baseline dataset
and an enriched one (containing the synthetic images). The pipeline in Figure 12 describes
the process.

Figure 12: Implementation - phase 3 pipeline
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4.1 Dataset

A comprehensive dataset is fundamental for any deep learning experiment. After careful
consideration, the Berkeley Deep Drive (BDD) dataset [7] was selected and adjusted to
meet the specific requirements of both methods used in this study. The from-scratch
model operated only on lower resolution images, whereas the ControlNet could handle
higher resolutions.

The BDD dataset is a public, diverse, large-scale urban dataset comprising 100K driving
videos collected from more than 50K rides, resulting in over 100 million frames. Anno-
tations are available for several tasks such as lane detection, object detection, and, most
importantly for this thesis, semantic segmentation.

For this work, a total of 8,000 semantic segmentation annotations—stored as polygons
in .json files—were processed. The original images, with a resolution of 1280x720, were
unsuitable for model training in their native form. To address this, 720x720 center-crops
were created and downscaled to 128x128 for the from-scratch model and 512x512 for
the ControlNet model. The .json annotations were processed into semantic segmentation
maps, and a colorbook containing class-color mappings for all 19 classes was created. The
classes included are: bicycle, motorcycle, train, bus, truck, car, rider, person, sky, terrain,
vegetation, traffic sign, traffic light, pole, fence, wall, building, sidewalk, and background.
These mappings allow for the modification or creation of new masks.

After data preprocessing, 7,000 images with corresponding masks were prepared for train-
ing, while 1,000 pairs were reserved for testing. Samples from the dataset (center-cropped
and resized) are shown in Figure 13. Even within this small subset, the diversity of the
dataset is evident.

Figure 13: BDD100k samples
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The colorbook, shown in Figure 14, is used for altering existing maps or creating new ones.
It is stored as a .json file containing explicit class and corresponding RGB values.

Figure 14: Generated colorbook

An example of an image and its corresponding semantic segmentation map is shown in
Figure 15.

Figure 15: Example of image and corresponding semantic segmen-
tation mapping

For transparency, the dataset summary is provided in Table 1.

Table 1: Summary of utilized datasets

Method Set Resolution Number of Samples Number of Classes
From-scratch Train 128x128 7000 19
From-scratch Test 128x128 1000 19
ControlNet Train 512x512 7000 19
ControlNet Test 512x512 1000 19

4.2 From-scratch diffusion model

4.2.1 Model design

Typically, a U-Net is used for diffusion models. This is what I applied as well, although
I had to strive for a relatively low computational cost architecture. Therefore, I omitted
most of the Cross-Attention [37] modules which are present in a standard implementa-
tion. My architecture (see Figure 16) consisted of 3 downscaling blocks [downscale, Dou-
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bleConv, DoubleConv], followed by 3 bottlenecks [DoubleConv], and finally 3 upscaling
blocks [upscale, DoubleConv, DoubleConv]. To aid more advanced feature extraction and
representation learning, two attention blocks were used in the network—both consisting of
multi-head attention and linear layers combined with normalization. DoubleConv layers
are defined as [Conv2d, GroupNorm, GELU, Conv2d, GroupNorm] [38] [39].

Timestep is integrated during the forward call via Transformer sinusoidal position embed-
ding [37]. It is passed to the following blocks through an embedding layer [SILU, Linear]
[40]: down1, down2, down3, up1, up2, and up3. Up to this point, this model is identical
to a model designed for unconditional training.

The incorporation of the semantic segmentation mask is the feature that makes my imple-
mentation unique. The masks are one-hot encoded, thereby creating a more meaningful
format for the neural network. When having 19 classes, the shape of an input tensor is
Bx19x128x128 (following a [B,C,H,W] order).

The semantic segmentation mask is passed through a simple DoubleConv block ([Conv2d,
GroupNorm, GELU, Conv2d, GroupNorm])—with ’num_classes’ (19) input channels and
128 output channels. The original input image is passed through a similar layer, but with
3 input and 128 output channels. It was essential to match the output channel numbers,
so feature values can be added when conditional training is in effect. Concatenation
would not have worked, since Classifier-Free Guidance takes unconditional steps as well,
and when None labels are passed, a channel number mismatch would emerge. With only
two Attention blocks, the total number of parameters was 90,816,131.

Figure 16: The utilized U-Net-like architecture
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4.2.2 Hyperparameters

The model was trained on a dataset of 7,000 128x128 images using a single NVIDIA V100
32 GB GPU over a period of two and a half days with a batch size of 50.

An AdamW [41] optimizer with a learning rate of 0.0003 was employed. The noising steps
were set to 1,000 for the diffusion process, as suggested in the original paper. Exponential
Moving Average (EMA) [42] was also introduced and proved to be more stable than the
basic model. While the training loss plateaued after approximately 300 epochs, indicating
minimal gains in traditional loss reduction, the visual fidelity of the results continued to
improve, peaking around 550 epochs. This suggests that the model benefits from extended
training periods for subtle optimization beyond what is captured by the loss metric alone.

4.2.3 Inference

After loading the trained model, inference can be performed. Due to the nature of
Classifier-Free Guidance (CFG), the trained model can be used in both an unconditional
and conditional manner. The CFG scale, set to 3, interpolates between the unconditional
prediction and the conditional prediction, weighting the conditional prediction three times
more heavily, thus enhancing the model’s adherence to the given condition while still
maintaining some influence from the unconditional prediction. To test the results of the
semantic segmentation (semseg) guidance experiment, masks need to be provided as con-
ditioning inputs. In my implementation, this can be done effortlessly by specifying a mask
path in a YAML configuration file. The only crucial requirement is to use the colors from
the colorbook (whose path is also defined in the YAML file) and provide a 128x128 semseg
mask. The dataloader handles the class mapping and one-hot encoding, and finally, the
iterative denoising process will generate novel images using the trained model.

Denoising a single sample with conditioning enabled takes approximately 1 minute and 15
seconds. Due to batching, the processing time is not directly proportional to the number
of samples, making it more efficient to process multiple samples simultaneously.

Inference time was measured for multiple batch sizes, as shown in Table 2.
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Table 2: Inference times for different batch sizes (1000 steps)

Samples Conditional Time [mm:ss] Unconditional Time [mm:ss]

1 01:15 01:11
2 01:35 01:31
4 02:19 02:15
8 03:47 03:41
16 04:58 04:48
32 08:58 08:42
64 21:12 20:47

4.3 Integration of ControlNet

4.3.1 Configuration and training

For integrating ControlNet, a pretrained Stable Diffusion model (specifically sd1.5) was
used as the foundation. The ControlNet implementation from the Diffusers GitHub repos-
itory1 was set up by following the detailed instructions provided, which include many con-
figuration options, allowing the entire training process to be tailored according to one’s
system capabilities.

The necessary dependencies were installed using the requirements.txt file. A Hugging
Face dataset was then created, consisting of a CSV file that contained paths to images,
corresponding semantic segmentation maps (as conditioning images), and captions labeled
as ’Traffic scene.’

The training process was initiated using the Accelerate library2 with an AdamW8bit3

optimizer for reduced memory usage. The learning rate was set to 1 × 10−5 to ensure
stable training. Specific validation images and prompts were included to evaluate the
model during training. The batch size was set to 16, and gradient checkpointing4 was
enabled for a more efficient memory utilization. Training, concluding at 20000 steps, took
around 20 hours. Based on visual inspection, checkpoints starting from 6000 steps were
acceptable, with 15000 steps being sufficient. Progress was tracked and reported using
Weights & Biases (wandb)5. Additionally, the training was configured to resume from the
latest checkpoint in case of interruptions.

1https://github.com/huggingface/diffusers/tree/main/examples/controlnet (accessed: 2024.05.29.)
2https://github.com/huggingface/accelerate, https://huggingface.co/docs/accelerate/en/index (ac-

cessed: 2024.05.22.)
3https://huggingface.co/docs/bitsandbytes/en/optimizers (accessed:2024.05.31.)
4https://huggingface.co/docs/transformers/v4.18.0/en/performance (accessed: 2024.05.31.)
5https://wandb.ai (accessed: 2024.05.22.)
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4.3.2 Inference

For inference, the Diffusers pipeline was used again. The ControlNet model and the Stable
Diffusion pipeline were loaded using the paths to the trained models. The UniPCMulti-
stepScheduler6 [43] - ’a training-free framework designed for fast sampling’ - was configured
for the inference process. Memory optimizations were also enabled by using ’xformers’7,
which reduces memory usage and computational load through efficient tensor operations,
and model CPU offload, which shifts parts of the computation from the GPU to the CPU
to balance the load and enhance overall performance.

The inference process involved processing each mask image in the input folder, generating
corresponding output images based on a specified prompt (’Traffic scene. Berkeley Deep
Drive style, high quality, extremely detailed texture.’), and saving the generated images
to the output directory. Compared to the slow inference of the from-scratch model, which
required 1000 steps, a single image was generated in just 20 inference steps, taking only
3 seconds. The 14000th checkpoint was selected for image synthesis, with the guidance
scale set to 5. Additionally, a manual seed was used to ensure the reproducibility.

4.4 Hardware and software environment

GPU power is indispensable for any sufficient training. A Docker container, running on a
DGX station containing 4 NVIDIA V100 cards (used 1) was provided by the university.
Access was ensured through SSH-connection.

The exact software and hardware setup:

• System: Ubuntu 18.04.6 LTS

• CPUs: 40 pcs Intel(R) Xeon(R) CPU E5-2698 v4 @ 2.20GHz

• GPUs: 4 pcs Tesla V100-DGXS-32GB (1 used)

• CUDA version: 11.7

• Memory: 257866 MB

VS Code served as a development environment, which bridged the gap between the cluster
and my local machine. Conda environments were created, to which the packages necessary
for the particular approach were added.

All codes were prepared in Python language, heavily relying on the PyTorch library8.
Wandb was used as a logger tool, which enabled to continuously monitor the progress of
the time-taking diffusion trainings.

6https://huggingface.co/docs/diffusers/en/api/schedulers/unipc (accessed: 2024.05.29.)
7https://huggingface.co/docs/diffusers/en/optimization/xformers (accessed: 2024.05.29.)
8https://pytorch.org (accessed: 2024.05.22.)
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Chapter 5

Results

Besides demonstrating how semantic segmentation mask-guidance offers explicit control,
improving an ADAS subtask must be the overall long-term goal. Therefore, a compre-
hensive evaluation of the from-scratch implementation, ControlNet model, and its impact
on ADAS is expected as well. The generative quality of the models is assessed by reserv-
ing 1,000 image-semseg pairs from the BDD dataset. These pairs were used to generate
novel images via the mask-guided models, which were trained on the remaining dataset.
The from-scratch model operates at a resolution of 128x128 pixels, and its inference is
relatively slow, while ControlNet operates at a higher resolution of 512x512 pixels and
is significantly faster. It should also be noted that ControlNet generations were queried
by the prompt ’Traffic scene. Berkeley Deep Drive style, high quality, extremely detailed
texture.’, without specifying any daytime condition.

The evaluation process included a comparison of the models based on several metrics:
SSIM (Structural Similarity Index Measure) [44], FID (Fréchet Inception Distance) [45],
KID (Kernel Inception Distance) [46], Pixel Accuracy, and IoU (Intersection over Union).
These metrics provided a quantitative measure of the generative quality of the models. Ad-
ditionally, visual evaluations were conducted to supplement the metric-based assessments,
involving the examination of images generated from standard, modified, and hand-painted
segmentation masks.

Despite lower metric values, ControlNet demonstrated superior performance in terms of
speed, visual evaluations, diversity, and practical application. Moreover, it offers signifi-
cantly higher resolution, which is crucial for ADAS tasks. Consequently, ControlNet was
selected for further analysis in improving the ADAS subtask. Subsequent sections con-
clude a detailed analysis of generative quality using both metrics and visual assessments,
highlighting limitations and examining the impact of the ControlNet images on an ADAS
downstream task.
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5.1 Objective evaluation

Table 3: Overall metric results for from-scratch and ControlNet models

Model SSIM FID KID Acc IoU

From-scratch 0.6588 1.0636 0.0105 0.8170 0.3507
ControlNet 0.6079 1.8791 0.0279 0.7353 0.3116

Although visual assessments provide significant insights into model performance, a robust
evaluation must also incorporate metric-based analyses. In this section multiple possibili-
ties are addressed for a comprehensive view. SSIM, FID and KID are the standard metrics
in the realm of generative models, therefore investigating their yielded results was critical
for understanding the nuanced differences between the two models. Table 3 provides a
summary of the overall metric results for the from-scratch and ControlNet models, which
are explained and further assessed in this section.

5.1.1 SSIM

The Structural Similarity Index (SSIM) [44] is a metric designed to gauge the perceived
quality of an image when compared to an original reference image. The SSIM is based
on three comparison measurements: luminance, contrast, and structure. Its formula is
defined as:

SSIM(x, y) = (2µxµy + c1)(2σxy + c2)
(µ2

x + µ2
y + c1)(σ2

x + σ2
y + c2) (5.1)

Where:

• x and y are the two images being compared.

• µx is the average of image x.

• µy is the average of image y.

• σ2
x is the variance of image x.

• σ2
y is the variance of image y.

• σxy is the covariance of x and y.

• c1 and c2 are constants given by:

c1 = (k1L)2

c2 = (k2L)2 (5.2)
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Where:

• L is the dynamic range of the pixel-values (usually 2number of bits per pixel − 1).

• k1 = 0.01 and k2 = 0.03 are commonly used values.

The SSIM metric it is typically calculated using a sliding Gaussian window of size 11x11,
this is what I applied as well. The possible values range from -1 to 1: -1 meaning perfect
anti-correlation, 0 indicating no similarities, and 1 perfect similarity.

For all 1000 image and corresponding generations the SSIM was calculated separately for
the two models. The overall average for the from-scratch model was 0.6588, and for the
ControlNet 0.6079, both indicating a satisfactory level of similarity.

To further investigate the results, the lowest and highest value pairs were logged to separate
folders. The saved results made it clear that the lower values were caused by the day-night
shifts. This is understandable, since the metric is based upon contrast and luminance,
a good structure is not enough to yield high results. See Figure 17, 18, 19 and 20,
each representing an original image, its corresponding mask, a generated image, and the
respective SSIM value. High value pairs turned out to be more close color-wise. They
also altered the scene, but by introducing relatively small modifications - like changed the
color of a single car, see Figure 21 and 22.

Figure 17: From-scratch model low SSIM value pair example 1

Figure 18: From-scratch model low SSIM value pair example 2
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Figure 19: ControlNet model low SSIM value pair example 1

Figure 20: ControlNet model low SSIM value pair example 2

Figure 21: From-scratch model high SSIM value pair

Figure 22: ControlNet model high SSIM value pair

5.1.2 FID

The Fréchet Inception Distance (FID) [45] is a metric designed to evaluate the quality of
generated images by comparing the statistical distribution of features extracted from a pre-
trained Inception network [47] (think of these as embeddings). Essentially, it calculates the
Fréchet distance between two multivariate Gaussian distributions, one from the generated
images and one from real images. A lower FID score indicates that the two sets of images
are more similar in terms of their statistics.
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Given two sets of images, real and generated, the FID is computed as:

FID(x, g) = ∥µx − µg∥2 + Tr(Σx + Σg − 2(ΣxΣg)0.5) (5.3)

Where:

• x represents the feature vectors of the real images and g represents the feature vectors
of the generated images.

• µx and µg are the means of the feature vectors for the real and generated images,
respectively.

• Σx and Σg are the covariance matrices of the feature vectors for the real and gener-
ated images, respectively.

• Tr stands for the trace of a matrix.

FID was calculated by the torchmetrics library1, using a pre-trained Inception V32 net-
work, resulting in an average of 1.0636 for the from-scratch model and 2.2753 for the
ControlNet. It is important to note that lower FID values indicate better image quality
and more similarity to the real dataset, but the scale is not strictly linear.

5.1.3 KID

Kernel Inception Distance (KID) [46] is another metric that provides a measure of the
similarity between two sets of images. KID computes the similarity in feature space (also
utilizing embeddings from an Inception model). While different kernel functions can be
applied, KID is most commonly associated with a polynomial kernel, though variants using
other kernels, like Gaussian, exist. One of the key advantages of KID is that it provides
an unbiased estimate of the population Maximum Mean Discrepancy (MMD).

Given two sets of images, real and generated, the KID is typically computed as:

KID(x, g) = E[κ(x, x′)] + E[κ(g, g′)] − 2E[κ(x, g)] (5.4)

Where:

• x and x′ are independent sets of feature vectors extracted from real images.

• g and g′ are independent sets of feature vectors extracted from generated images.

• κ(·, ·) is the kernel function.
1https://torchmetrics.readthedocs.io/en/stable/image/frechet_inception_distance.html

(accessed: 2023.11.02.)
2https://pytorch.org/hub/pytorch_vision_inception_v3/ (accessed: 2023.10.30.)
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For the polynomial kernel commonly used with KID, the kernel function is defined as:

κ(a, b) = (aT b + c)d (5.5)

Where c is a constant, often set to 1, and d is the degree of the polynomial, frequently
chosen as 2.

However, if one were to use the Gaussian kernel, it is defined as:

κ(a, b) = exp
(

−∥a − b∥2

2σ2

)
(5.6)

Where σ is the kernel width.

It is important to note that when samples come from the same distribution, MMD (and
thus KID) is expected to be close to zero, indicating that the two sets of images are similar
in the feature space.

I used the KID implementation from the torchmetrics library3. Default values were used,
except for ’subset_size’, which was set as 100. Degree of the polynomial kernel function
was 3 and KID value for the from-scratch model’s dataset was calculated as 0.0105 and
0.0279 for the ControlNet’s.

5.1.4 Pixel accuracy and IoU

Although SSIM, FID, and KID are standard methods for generative model evaluation,
due to the sensitivity of SSIM and FID and for better coverage, a fourth method was
introduced. A pretrained semantic segmentation network was deployed to produce masks
for both original and generated images.

Defining P as the correctly classified pixels and T as the total pixels, Pixel Accuracy is
given by:

Pixel Accuracy = P

T
(5.7)

For Intersection over Union (IoU), where I represents the intersection and U the union of
the predicted and ground truth segmentations:

IoU = I

U
(5.8)

Using a pretrained Mask2Former4 model (trained on Cityscapes [48] at a different res-
olution), the evaluation on 128x128 resolution BDD images revealed an average IoU of
0.3507 and a notably impressive pixel accuracy of 0.8170. The achieved pixel accuracy

3https://torchmetrics.readthedocs.io/en/stable/image/kernel_inception_distance.html,
(accessed: 2023.11.01.)

4https://huggingface.co/facebook/mask2former-swin-large-cityscapes-semantic
(accessed: 2023.11.01.)
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means that the model classified over 81% of the pixels correctly, underscoring the diffu-
sion model’s ability to authentically reproduce the broader segmentation structures. The
same experiment was issued for the 512x512 ControlNet generations, resulting in an av-
erage IoU of 0.3116 and an imposing pixel accuracy of 0.7353 While the IoU, influenced
by resolution and dataset variations, might seem modest, the commendable pixel accu-
racy provides a testament to both mask-guided models’ overall effectiveness in crafting
structurally coherent images.

Subsequent sections will present visual evaluations to further affirm the success of the
methods.

5.2 Subjective evaluation

5.2.1 Test masks

Images were synthesized by both models for the 1000 test masks, in this subsection a
selection of these examples are presented.

First, the from-scratch generation set is inspected (Figure 24). Notably, the last image
(bottom row, far right) shows a translucent human figure. This issue is due to imbalanced
data, as the model lacked sufficient human references. Otherwise, the model performed
well with vehicle generation in the other samples. Further examples can be found in
Appendix A.0.36.

Figure 23: Test masks (128x128 scaling)

Figure 24: From-scratch model - Image generations based on the
corresponding input masks in Figure 23

Images for the ControlNet model were queried in a similar manner, see Figure 25 and
Figure 26. An important factor was the checkpoint selection. Earlier checkpoints tended
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to be more similar to the BDD domain, but the semantic segmentation control was not fully
operational, causing objects not to perfectly fill the masks. Conversely, later checkpoints
lost the BDD style and relied solely on the Stable Diffusion domain. A potential solution -
besides optimal checkpoint selection and guidance scale setup - could involve the finetuning
of the Stable Diffusion model preceding the ControlNet training. This approach could
adapt the BDD style before ControlNet training.

Figure 25: Test masks (512x512 scaling)

Figure 26: ControlNet model - Image generations based on the
corresponding input masks in Figure 25

Further examples can be found in Appendix A.0.37, A.0.38.
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5.2.2 Modified test masks

Although there were varying scene setups in the test set, custom controllability can be
better showcased via modifying those masks.

An example of the initial mask, the original image, and the generated image (from-scratch
model) before any alteration is presented in Figure 27.

Figure 27: Original image, mask and generated image (from-
scratch model)

After modifying the mask via adding an extra car, the structure of the generation using
the from-scratch model changed as expected, the object was inserted into the appropriate
place (Figure 28).

Figure 28: From scratch model - Modified mask and generated
image

It should be noted that the lines changed; however, since this was not annotated on the
semseg mask, it is a natural behaviour. This observation could pave the way for poten-
tial improvements. For instance, a custom parameter might be introduced to adjust the
model’s tendency to preserve the original color nature of the photo. While this modifica-
tion offers potential for other use-cases, the current implementation remains a robust tool
for data enrichment.

The experiment was repeated on an 512x512 resolution mask for the ControlNet model.
Results were similar, the car was placed to the appropriate position (see Figure 29).
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Figure 29: ControlNet - generated image
As a side note, ControlNet’s additional prompt-guidance mechanism can specify textu-
ral aspects of the scene, which could also be utilized to define lane configurations when
necessary.

5.2.3 Hand painting

This approach is particularly intriguing as it enables users to create new images by de-
signing hand-drawn masks in a basic image editor leveraging the established colorbook. A
streamlined pipeline has been developed to effortlessly produce images from these hand-
crafted sketches. See Figure 30 and Figure 31 for the results.

Figure 30: From-scratch model - Rough hand painting
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Figure 31: ControlNet model - Rough hand painting

Although the generated images may not exhibit the intricate details observed in outputs
derived from precise semantic masks, the increased user control and interactive experience
compensate for this limitation.

5.3 ADAS task performance improvement

Following a thorough evaluation of two distinct approaches, it became clear that while the
from-scratch approach performed better metrically, the ControlNet model excelled in terms
of resolution, visual quality, speed, ease of integration, and training time. Consequently,
due to these advantages, the ControlNet model was selected for further development.

To facilitate training, a synthetic dataset comprising 7,000 novel images was generated
using the base prompt ’Traffic scene. Berkeley Deep Drive style, high quality, extremely
detailed texture.’

To evaluate the impact of the synthetic dataset on ADAS, a DeepLabv3 [49] semantic
segmentation network was trained on the original dataset of 7000 images (training split),
followed by retraining with an augmented set that included the 7000 additional synthesized
images. These new images enriched the diversity and complexity of the training data. The
key focus of this evaluation was to quantify improvements in the semantic segmentation
network’s performance. Post augmentation, the validation mean IoU of the network im-
proved from 37.5% to 39.2%, demonstrating the effectiveness of using synthesized imagery
in enhancing the robustness and adaptability of ADAS systems. I believe that significant
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improvements can be achieved in the future by carefully examining the weaknesses of the
dataset. By specifically generating images to address class imbalances or by producing
an order of magnitude more synthetic images, the training dataset can be substantially
augmented.
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Chapter 6

Discussion

6.1 Metric results

From-scratch models yielded slightly better results. This can be attributed to the fact
that the from-scratch model was trained only on the training data, and the sequences
were not strictly separated into exclusive train and test splits due to the nature of the
original dataset. This issue could be improved by using a dataset where data selection has
been performed with great precision, separating it into distinct training and validation
semseg sets. Consequently, the model may have overfitted to certain scene setups, accu-
rately guessing the original daytime conditions. On the other hand, ControlNet leverages
a larger dataset from the pre-trained Stable Diffusion model, which has been exposed
to a diverse range of images. This extensive pre-training allows ControlNet to general-
ize better to various scenarios. Additionally, its ’Traffic scene. Berkeley Deep Drive style,
high quality, extremely detailed texture.’ prompt did not provide specific guidance regard-
ing the potential daytime of the generation, therefore the queried images were generated
predominantly during the day by default.

6.2 Limitations

The most conspicuous difference between the two methods is the resolution. An effort
was made to upscale the from-scratch model generations and therefore bring closer the
two results. Directly scaling up the model’s architecture is not a viable approach due to
the prohibitive computational demands. Instead, advanced deep learning techniques were
leveraged, a pretrained super-resolution model1 was employed to upscale the generated
images. The overarching scene composition remained unchanged, but refined details did
not scale up accordingly (see Figure 32). Potentially, a model explicitly trained on the

1https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/upscale
(accessed: 2023.10.30)
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BDD dataset might offer enhanced outcomes, but exploring that avenue remained beyond
the current study’s scope.

a)

b)

Figure 32: From-scratch model synthesized images and their 4x
upsampled versions

Another important aspect is that the ControlNet model is able to generate images via
extra prompt guidance, leveraging information also from the pre-training data. The from-
scratch model was not armed with such abilities. However, if the checkpoint is not selected
carefully, semantic segmentation control might not yet be in full effect, and details can be
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lost. When the goal is to produce images that otherwise could not be recorded this is not
a limitation, however the most optimal solution is when multiple images can be produced
for a single label, therefore saving the costs of re-labeling. Figure 33 demonstrates the
production of varying style images from a single mask - leveraging information from the
pre-trained Stable Diffusion model - and also points out how some minor details are lost
in the background.

Figure 33: Variations of the original image via the following
prompt conditioning: middle-left: ’Yellow taxi. Traffic
scene.’, middle-right: ’Snowy weather. Traffic scene.’,
bottom-left: ’Autumn weather. Traffic scene.’, and
bottom-right: ’Police car. Traffic scene.’

It is also important to address the drawbacks of using extra pre-training data. One
significant issue is the occurrence of so-called hallucinations, which are most common
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in objects that typically contain textual information in the real world. For example, as
shown in Figure 34, meaningless text can sometimes appear. To mitigate this problem,
automated quality checking can be employed. This involves using scripts or tools, such
as other trained deep learning models, to filter out flawed generations. For instance, a
LLaVA [50] model could be used to detect and remove images containing anomalous text.
See Figure 35 for such attempt.

Figure 34: ControlNet hallucination example.

Figure 35: Utilizing LLava [50] for detecting hallucinations auto-
matically on generated image.

6.3 From-scratch vs ControlNet model

This section outlines the main differences between the from-scratch and the ControlNet
model, focusing on resolution, inference speed, performance on rare objects, training de-
tails, and other relevant aspects.

The from-scratch model operates at a resolution of 128x128 pixels, which limits the level of
detail, fidelity, and most importantly, the industrial applicability of the generated images.
Higher resolution image generation would have required significantly greater resources
and out-of-the-box deep learning-based upscalers could not compensate this drawback ei-
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ther. Training from scratch is inherently a time-consuming and resource-intensive process.
In contrast, the ControlNet model functions at a higher resolution of 512x512 pixels (and
can be further upscaled), producing more detailed and realistic images. Additionally, Con-
trolNet benefits from a pre-training phase, significantly reducing the time and resources
needed to achieve a reasonable level of performance.

Inference speed is another critical factor in practical applications. The from-scratch model
is relatively slow in generating images due to its less optimized algorithm (DDPM) and
architecture. Conversely, the ControlNet model demonstrates significantly faster infer-
ence speeds, even at larger resolutions. This improvement is partly due to ControlNet’s
integration within the Hugging Face ecosystem, where the availability of state-of-the-art
optimizations and libraries makes it a superior implementation compared to my from-
scratch model. This ecosystem allows ControlNet to be seamlessly integrated into existing
workflows, facilitating faster development.

Regarding generative capabilities, the from-scratch model is built solely on my limited
training data and relies exclusively on semantic segmentation guidance. In contrast, Con-
trolNet leverages both pre-training information and prompt guidance. Therefore, Control-
Net can be guided towards scene setups that were not part of the training dataset. While
ControlNet’s ability to hallucinate can introduce unexpected elements, this behavior can
be monitored through an automatic quality checking workflow.

It is worth noting that the from-scratch model could be extended to a phase where it is
first trained on another large dataset and then also aided by text guidance. However,
given that ControlNet comes in a usage-ready state with a complete, well-built ecosystem,
such a development would be an infeasible overhead in today’s world, where producing
results rapidly is a top priority.

In summary, the ControlNet model offers several advantages over the from-scratch model,
including higher resolution, faster inference speed, better performance on rare objects,
and more efficient training. Additionally, ControlNet’s integration into the Hugging Face
ecosystem makes it a superior choice for rapidly generating automotive data and improving
ADAS tasks.
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Chapter 7

Summary and Future Work

Throughout my work, a series of systematically planned steps were undertaken. Datasets
and models for two distinct training types were prepared. Semantic segmentation mask-
guidance was achieved by modifying a standard U-Net-like architecture and by training
a ControlNet model. Using my custom DDPM-based diffusion model and the tailored
ControlNet-based approach, I managed to train models for generating automotive data.
An efficient pipeline was developed, streamlining data processing, training, and testing for
each setup. Results were evaluated metrically and visually, and the effect of the synthetic
data on the ADAS task was assessed.

The generation of a synthetic dataset that successfully improved an ADAS downstream
task is a noteworthy achievement. This accomplishment provides valuable insights for
industrial applications.

Looking forward, there are still avenues for improvement. One promising direction is
to fine-tune or use LoRA [51] training on a Stable Diffusion Model prior to ControlNet
training. This would help the base model better adapt to the specific data domain. Ad-
ditionally, resolutions could be increased by opting for another base model, such as SDXL
[52]. Finally, it would be beneficial to extend the overall pipeline with automated quality
checking, ensuring that only high-fidelity generations are added to the synthetic dataset.
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Appendix

Code listings

Preparing alpha (α), alpha_hat (ᾱ), beta (β):

def cosine_noise_schedule(self):

t = torch.linspace(0, 1, self.noise_steps)

return reversed(self.beta_start + (self.beta_end - self.beta_start)

* (1 + torch.cos(torch.tensor(np.pi) * t)) / 2)

self.beta = self.cosine_noise_schedule().to(device)

self.alpha = 1. - self.beta

self.alpha_hat = torch.cumprod(self.alpha, dim=0)

Noising function (closed form):

def noise_images(self, x0, t):

sqrt_alpha_hat = torch.sqrt(self.alpha_hat[t])[:, None, None, None]

sqrt_one_minus_alpha_hat = torch.sqrt(1 - self.alpha_hat[t])[:, None, None, None]

e = torch.randn_like(x0)

return sqrt_alpha_hat * x0 + sqrt_one_minus_alpha_hat * e, e

Algorithm 1 - training:

for epoch in range(args.epochs):

for batch_idx, (images, labels) in enumerate(tqdm(dataloader)):

images = images.to(device)

t = diffusion.sample_timesteps(images.shape[0]).to(device)

x_t, noise = diffusion.noise_images(images, t)

predicted_noise = model(x_t, t)

loss = mse(noise, predicted_noise)

optimizer.zero_grad()

loss.backward()

optimizer.step()
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Algorithm 2 - sampling:

model.eval()

with torch.no_grad():

x = torch.randn((n, 3, self.img_size, self.img_size)).to(self.device)

for i in tqdm(reversed(range(1, steps)), position=0):

t = (torch.ones(n) * i).long().to(self.device) #timestep.. used for indexing

predicted_noise = model(x, t)

alpha = self.alpha[t][:, None, None, None]

alpha_hat = self.alpha_hat[t][:, None, None, None]

beta = self.beta[t][:, None, None, None]

if i > 1: #if not last, add noise

noise = torch.randn_like(x)

else:

noise = torch.zeros_like(x)

x = 1 / torch.sqrt(alpha) * (x - ((1 - alpha) / (torch.sqrt(1 - alpha_hat))) * predicted_noise)

+ torch.sqrt(beta) * noise

model.train()

x = (x.clamp(-1, 1) + 1) / 2

x = (x * 255).type(torch.uint8)

return x
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Supplementary images

Figure A.0.36: Test masks and corresponding generations (From-
scratch model)
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Figure A.0.37: Test masks and corresponding generations (Con-
trolNet model)
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Figure A.0.38: Test masks and corresponding generations (Con-
trolNet model)

54


	Kivonat
	Abstract
	Introduction
	Theoretical Background
	Basic image augmentation methods
	Main types of generative models
	Generative Adversarial Networks
	Variational Autoencoders
	Diffusion models
	Generative learning trilemma

	Denoising Diffusion Probabilistic Models
	Forward diffusion - adding noise
	Reverse diffusion - removing noise
	Complete pipeline
	Classifier Free Guidance
	Guiding methods

	Introduction to popular methods
	Stable Diffusion
	Limitations

	ControlNet


	Goal
	Methods and Implementation
	Dataset
	From-scratch diffusion model
	Model design
	Hyperparameters
	Inference

	Integration of ControlNet
	Configuration and training
	Inference

	Hardware and software environment

	Results
	Objective evaluation
	SSIM
	FID
	KID
	Pixel accuracy and IoU

	Subjective evaluation
	Test masks
	Modified test masks
	Hand painting

	ADAS task performance improvement

	Discussion
	Metric results
	Limitations
	From-scratch vs ControlNet model

	Summary and Future Work
	Bibliography
	Appendix

