
IJ-13-15

1
Abstract— Due to the restriction of designing faster

and faster computers, one has to find the ways to maximize
the performance of the available hardware. A distributed
system consists of several autonomous nodes, where some
nodes are busy with processing, while some nodes are idle
without any processing. To make better utilization of the
hardware, the tasks or load of the overloaded node will be sent
to the under loaded node that has less processing weight to
minimize the response time of the tasks. Load balancing is a
tool used effectively for balancing the load among the
systems. Dynamic load balancing takes into account of the
current system state for migration of the tasks from heavily
loaded nodes to the lightly loaded nodes. In this paper, we
devised an adaptive load-sharing algorithm to balance the load
by taking into consideration of connectivity among the nodes,
processing capacity of each node and link capacity.
Keywords: Load balancing, Distributed System,
heterogeneous, response time .

I. INTRODUCTION
An important attribute in a dynamic load balancing policy is to
initiate the load balancing activity that specifies which node is
responsible for detecting imbalance of the load among the
nodes [9]. A load-balancing algorithm is invoked when load
imbalance among the nodes is detected. The initiation of load
balancing activity will have a higher impact on complexity,
overhead and scalability. The load balancing algorithm is
designed in such a way to make the overloaded node to
transfer its excess load to the underloaded node which is
called sender – initiated and when underloaded node requests
the load from the overloaded node then it is called receiver-
initiated [6][8].

Domain balancing is used to decentralize the
balancing process by minimizing its scope and decreasing the
time complexity of the load-balancing algorithm. A domain is
defined as subset of nodes in a system, such that a load
balancing algorithm can be applied for this subset of nodes in
a single step. Domain balancing is used in load balancing
algorithms to decentralize the balancing. The balancing
domains are further divided into two types: The first type is

Manuscript submitted May 3, 2013, revised Aug 13, 2013. P. Neelakantan
is with the Department of CSE, SVU College of Engineering, Tirupati-517501
(e-mail:pneelakantan@rediffmail.com). Dr.A.Rama Mohan Reddy is with the
Department of CSE, SVU College of Engineering, Tirupati, (e-mail:
ramamohansvu@yahoo.com).

overlapped domains, which consists of node initiating the
balancing activity and balances its load by migrating the tasks
or load units with the set of surrounding nodes. [3]

Global balancing is achieved by balancing every

domain and by diffusing the excess load throughout the
overlapped domains in a distributed system. Another
important attribute in load balancing algorithm is the degree of
information. The degree of information plays an important
role in making the load balancing decisions. To achieve global
load balancing in a few steps, the load balancing should get
absolute information instead of getting the obsolete
information from the nodes. In general, the collection of
information by a node is restricted to the domain or nearest
neighboring nodes (which are directly connected to a node)[4].

Although collecting information from all the nodes in

a distributed system gives the exact knowledge of the system,
it introduces large communication delay, so from this
perspective, it will have a negative impact on the load
balancing algorithm. In such cases, it has been observed, that
the average response time is kept minimum without load
balancing instead of doing the load balancing which induces
overhead in migrating the load from one node to another node
in the system [5].

 In this section, an abstract view of the software details is
presented for load balancing. The distributed system consists
of several nodes and the same load balancing software is
installed to run on all the nodes in the distributed system. By
installing the same software in all the nodes, the load
balancing decision is taken by a node locally (decentralized)
by collecting the information from the neighboring nodes as
opposed to the centralized load balancing policy [14].

The program must use a multi-threaded concept to
implement load balancing in a distributed system. Two
communication ports are available: TCP and UDP. UDP is
preferable as it incurs less communication overhead. In
general the architecture provides three layers: Communication
layer, Load balancing process and application layer [14][10].
For storing information two data structures were used.

The communication link is responsible for four

phases: node status information phase, node status reception,
tasks reception and task migration. The node status
information is responsible for disseminating the load

An Adaptive Load Sharing Algorithm for
Heterogeneous Distributed System

P.Neelakantan, A.Rama Mohan Reddy

IJ-13-15

information to the node that has requested it. The exchange of
the information has a profound effect on the load balancing
decision; it has to be done according to the predefined
intervals of time specified on each node[7][14].

The status reception is responsible for receiving the

status information from the other nodes and it will be updated
in the local node list which is running the status reception
phase. Here it is possible to distinguish the old information
from the new information. The technique that is used to find is
to associate the timestamp for the information that it has
received from some node (say ܶ ௝ܵ

௜(݂݊ܫ), the time stamp
attached to the information received from ݆ to ݅). The local
node say ݅ maintaining the status about the node ݆ is kept in
the memory. If any estimate regarding node ݆ exists in the
node ݅ memory, it will be compared to the received time
stamp message and drops the old time stamp and the new
timestamp message has been saved in the memory as the old
time stamp has the obsolete information [11][1][2].

Once a node collects the above information, it knows

whether it is overloaded or underloaded. In case if it is
overloaded node, it transmits the excess tasks (loads) to the
underloaded nodes in a “tasks transmission” phase. The next
initiation of load balancing activity will be done only when the
current migration of load units to the underloaded nodes is
completed.

The “task reception” is responsible for listening to

the requests and accepts the tasks sent from the other nodes.
As we can observe from the above situations, the minimum
time to initiate the new load balancing activity takes three time
instants. One instant for receiving the status of all the nodes
and second time instant for determining the underloaded nodes
and computing the excess load and third time instant for
transferring the excess load to the underloaded nodes which
has been determined in the second time instant. So, the new
load balancing activity takes place only at the fourth time
instant [12] [14].

In a few papers [3] [9] [10], it is assumed that the

nodes will not fail. The problem arises when the nodes fail
which is common in the distributed systems. Sometimes a
communication link will also fail, so the node will be
unreachable. These two aspects i.e., failure of a node and the
communication link will affect greatly the load balancing
algorithms. Let us assume the following scenario. The
overloaded node has collected the load information from the
neighboring nodes and found some of the nodes are low
loaded as discussed earlier. Now at the given time instant
when the node tries to send its excess load to the overloaded
node, it will not succeed because of the failure of the node.
The node may fail after sending the status information. If this
happens, an alternative must be chosen to avoid a failure of
the load-balancing algorithm.

II. NOTATIONS & ASSUMPTIONS
N: Number of nodes
V= {1, 2… N} a set of nodes in a system

qi: Number of tasks in the queue of node i
wi(t): Expected waiting time experienced by a task inserted
into the queue at the ith node in time t
Ai(t): rate of generation of waiting time on ith node caused by
the addition of tasks in time t.
Si(t): rate of reduction in waiting time caused by the service of
the tasks at the ith node in time t.
ri(t) : rate of removal(transfer) of the tasks from node j to node
i at time t by the load balancing algorithm at node j.
tsi: Average completion time of the task at node i.
bi: Average size of the task in bytes at node i when it is
transferred
dij: Transfer rate in bytes/sec between node i and node j
 Average size of the queue calculated by node i based on :(ݐ)ത௜ݍ
its domain information at time t.
௜ܦ ௜: Neighboring nodes to i which is defined asܦ = {݆|݆ ∈
ܸ ܽ݊݀ (݅, ݆) ∈ where V= {1, 2…N} {ܧ
 .Excess number of tasks at node i at time t:(ݐ)௜ܧ
fij: Portion of the excess tasks of node i to be transferred to
node j decided by the load balancing algorithm.

The following assumptions were made in this paper:

1. It is assumed that a distributed system consists of N
heterogeneous nodes interconnected by an underlying
arbitrary communication network. Each node i in a
system has a processing weight Pi >0 and processing
capacity Si>0. The load is defined to be Li= Pi/Si. In
homogenous case the value of Li=Pi.

2. It has been assumed that tasks arrive at node i
according to Poisson process with rate ߣ௜(ݐ). A task
arrived at node i may be processed locally or
migrated through the network to another node j for
remote processing. Once the task is migrated it
remains there until its completion.

3. It is assumed that there is a communication delay
incurred when task is transferred from one node to
another before the task can be processed in the
system. The communication delays are different for
each link.

 Each node contains an independent queue where arrived
tasks are added to the queue, which results in accumulation of
waiting time. Load balancing must be done repeatedly to
maintain load balance in the system. Each node runs the load-
balancing algorithm individually and hence the proposed
algorithm is distributed in nature.

The second level of the system is a load-balancing
layer, which consists of load balancing algorithms. The load
balancing process is initiated by using predefined or randomly
generated time instants, kept in a file. The algorithm
determines the portion of the excess load to be sent to the
underloaded node based on the current state of the node and
availability of the nodes in the network. The load balancing
algorithm must consider the communication delay while
migrating the tasks to the other nodes. The algorithm selects
the tasks to migrate to other nodes by setting their status as

IJ-13-15

inactive to avoid execution of the tasks by current node
application during the transition period. After completion of
the task transmission activity, the status of the tasks is set to
active when they are not transmitted to any node. When the
tasks are transmitted to other nodes during the task
transmission phase then those tasks are removed from the task
queue of the current node.
 Application layer consists of two threads of control: Task
input and task execution threads. The task input creates a
number of tasks defined in the initialization file and inserts
them in the task queue. This task input is also responsible for
adding the new tasks to the task queue either from the current
node or from other nodes in the system. The task execution
thread is responsible for execution of the tasks and updating
the QSize variable by removing the task from the task queue.

The load balancing policy must take into account of
processing capacity of the node while migrating the tasks to it.
The selected node may become a candidate for one or more
overloaded node in a given time instant because of the
decentralized policy. Another issue to be considered is
variable task completion times. Taking these issues a priori is
not possible so a load balancing strategy must be adaptive to
the dynamic state changes in the system and act accordingly to
transfer the tasks. Even this can result in task shuttle between
the nodes, so a migration limit for a task should be set to avoid
task thrashing.

Another issue to be considered while migrating the
tasks from one node to another node in a system is
communication overhead. Large communication delays will
have a negative impact on the load balancing policy, so, the
transfer delays must be taken into account while migrating the
task. When the completion of the task time in current node is
greater than the completion time on task in another node
inclusive of communication overhead, then only a task is
considered for migration.

III. MATHEMATICAL MODEL
The mathematical model for load balancing in a given node i
is given by [1] [2]

ௗ௪೔(௧)
ௗ௧

௜ܣ= − ௜ܵ + (ݐ)௜ݎ −∑ ௜݂௝
௧௦೔
௧௦ೕ

ஷே೔
௝ୀଵ ݐ)௝ݎ − ߬௜௝) (1)

 (ݐ)ത௜ݍ -(ݐ)௜ݍ =(ݐ)௜ܧ
(ݐ)௜ݎ = ((ݐ)௜ܧ)௜ܩ
௜݂௝ ≥ 0, ௜݂௜=0, ∑ ௜݂௝ = 1ஷே೔

௝ୀଵ

(ݐ)௜ܧ = ൜ݕ ݂݅ ܧ ≥ 0
ݕ ݂݅ 0 < 0

When a task is inserted into the task queue of node i, then it
experiences the expected waiting time which is denoted by
wi(t).
Let the number of tasks in ith node is denoted by ݍ௜(t).
Let the average time needed to service the task at node i ݏݐ௜ .
The expected (average) waiting time is given by at node i is
given by ݓ௜(ݐ) = .௜ݏݐ(ݐ)௜ݍ
Note that ݓ௜(ݐ)/ݏݐ௜ = ௜ is the number of tasks in the node iݍ
queue.
Similarly ݓ௞(ݐ)/ݏݐ௞ = .௞ is the queue length of some node kݍ
If tasks on node i were transferred to some node k, then the

waiting time transferred is ݍ௜ݏݐ௞=௪೔(௧)௧௦ೖ
௧௦೔

 , so that the fraction
 ௜ converts waiting time on node i to waiting time onݏݐ/௞ݏݐ
node k.
௜ܣ ∶ Waiting time generated by adding the task in the ith node.
௜ܵ : Rate of reduction in waiting time caused by the service of

tasks at the ith node is given by ௜ܵ = (1 ∗ ௜=1 for݌ݐ/(௜݌ݐ
all ݓ௜(ݐ) > 0.
(ݐ)௜ݎ ∶ The rate of removal (transfer) of the tasks from node i
at time t by the load balancing algorithm at node i. ௜݂௝ is the
fraction of ith node tasks to be sent out to the jth node. In more
detail fijri(t) is the rate at which node i sends waiting time
(tasks) to node i at time t where fii>=0 and ௜݂௜=0.That is, the
transfer from node i of expected waiting time (tasks)
∫ ݐ݀(ݐ)௜ܧ
௧మ
௧భ

 in the interval of time [ݐଵ, ଶ] to the other nodes isݐ
carried out with the ݆௧௛ node receiving the fraction ݌௜௝(ݐ௣ೕ/
∫(௣೔ݐ ݐ݀(ݐ)௜ݑ

௧మ
௧భ

 where the ratio ݐ௣ೕ/ݐ௣೔ converts the task from
waiting time on node i to waiting time on node j. As
∑ (௡
௜ୀଵ ௜݂௝ ∫ ݐ݀(ݐ)௜ܧ

௧మ
௧భ

) = ∫ ݐ݀(ݐ)௜ܧ
௧మ
௧భ

 , this results in removing

all of the waiting time ∫ ݐ݀(ݐ)௜ܧ
௧మ
௧భ

 from node i.The quantity

௜݂௝ܧ௜(ݐ − ߬௜௝) is the rate of increase (rate of transfer) of the
expected waiting time (tasks) at time t from node i by (to)
node j where ߬௜௝(߬௜௜ = 0) is the time delay for the task transfer
from node i to node j.

In this model, all rates are in units of the rate of change of
expected waiting time, or time/time which is dimensionless.
As ܧ௜(ݐ) ≥ 0, node i can only send tasks to other nodes and
cannot initiate transfers from another node to itself. A delay is
experienced by transmitted tasks before they are received at
the other node. The control law ܧ௜(ݐ) = ௜ܩ ∗ states that (ݐ)௜ܧ
if the ݅௧௛ node output ݓ௜(ݐ) is above the domain average
(∑ ݐ)௝ݍ − ߬௜௝))௡

௝ୀଵ /n, then it sends data to the other nodes,
while if it is less than the domain average nothing is sent. The
݆௧௛ node receives the fraction ∫ ௜௝ܨ

௧మ
௧భ

 of ݐ݀(ݐ)௜ݑ (௣ೕݐ/௣೔ݐ)

transferred waiting time ∫ ݐ݀(ݐ)௜ܧ
௧మ
௧భ

 delayed by the
time ߬௜௝ .The model described in (1) is the basic model for load
balancing, but an important feature is to determine fij for each
underloaded node j. One approach is to distribute the excess
load equally to all the underloaded neighbors.

 ௜݂௝ = ଵ
௡ିଵ

 for i≠j.

Another approach is to use the load information

collected from the neighbors to determine the deficit load of
the neighbors. The deficit load of the neighbours shall be
determined by node i by using the formula (2)

 ത௜ (2)ݍ − (௜௝߬-ݐ)௝ݍ

The above formula is used by node i to compute the

deficiency waiting times in the queue of node j with respect to
the domain load average of node i.

If node j queue is above the domain average waiting

time, then node i do not send tasks to it. Therefore (ݍത௜ − -ݐ)௝ݍ

IJ-13-15

߬௜௝)) is a measure by node i as how much node j is behind the
domain average waiting time. Node i performs this
computation for all the other nodes which are directly
connected to it and then portions out its tasks among the other
nodes that fall below the domain queue average of node i.

 ௜݂௝ =
(௤ത೔ି௤ೕ(௧ିఛ೔ೕ))

∑ (௤ത೔ି௤ೕ(௧ିఛ೔ೕ)
ಿ೔
ೕసభ

 (3)

If the denominator ∑ ത௜ݍ) − ݐ)௝ݍ − ߬௜௝)ே೔

௝ୀଵ =0 then fij
are defined to be zero then no waiting times are transferred. If
the denominator ∑ ത௜ݍ) − ݐ)௝ݍ − ߬௜௝)ே೔

௝ୀଵ =0, then(ݍത௜ − ݐ) ௝ݍ −
߬௜௝) ≤ 0∀݆ ∈ ௜ܰ. However by definition of the average
∑ ത௜ݍ) − ݐ)௝ݍ − ߬௜௝)ே೔
௝ୀଵ ത௜ݍ+ − ∑= (ݐ)௜ݍ ത௜ݍ) − ݐ)௝ݍ − ߬௜௝)ே೔

௝ୀଵ)=0
which implies ݍത௜ − ∑=(ݐ)௝ݍ ത௜ݍ) − ݐ)௝ݍ − ߬௜௝)ே೔

௝ୀଵ) > 0

That is, if the denominator is zero, the node j is not

greater than its domain queue average, so Ei(t)= GiEi(t))=0,
where G is Gain Factor.fij :Portion of the excess tasks of node
i to be transferred to node j decided by the load balancing
algorithm. Except the last three parameters remaining
information is known at the time of load balancing process.
Before the instance of load balancing activity, every variable
is updated.

IV. PROPOSED ALGORITHM

Algorithm ALS

The current node i, performs the followings:
a. Calculate the average queue size (ݍത௜)based on

the information received from the neighbouring
nodes.

ത௜ݍ =
ଵ

ஷே೔ାଵ
 ∑ ௜ݍ) + ௝ݍ

௧௦ೕ
௧௦೔

ஷே೔
௝ୀଵ)

 if (ݍ௜ > G * (ത௜ݍ-௜ݍ)= ത௜)then Eiݍ
 else Exit.

b. Determine the participant nodes in load sharing
process.

 Participants= {j| ݍ௝<ݍത௜, jNi}
c. Calculate the fraction of the load (௜݂௝

′) to be sent
to the participants

 ௜݂௝
′=

௤ത೔ି(
೟ೞೕ
೟ೞ೔

)௤ೕ

∑ (௤ത೔ି(
೎ೕ
೎೔

)௤ೕ
ಿ೔
ೕసభ

d. Calculate maximum portion of the excess load
(௜݂௝

′′)
 ௜݂௝

′′= (௤೔ି୉౟) ௧௦೔ ୢ୧୨
୉౟ୠ౟

e. ݂݆݅ = Min (௜݂௝
′, ௜݂௝

′′)

f. For j∈ Participants

a. Announce to node j about its willingness to
send T୧୨= ݂݆݅ *Ei tasks;

b. nowReceived = call procedure
acceptanceFromNodej()

c. if(nowReceived >0)
i. Transfer NowReceived to j

ii. T୧୨=T୧୨- NowReceived

 End if
g. Repeat steps from (a) to (f).

Procedure acceptanceFromNodej()
 if ((ݍ௝+ Tij) ݍത௝nowSend=ݍത௝ − ;௝ݍ
 else nowSend=-1;
return now Send;

 end acceptanceFromNodej

 In general it is assumed that keeping the Gain factor G=1
will give the good performance. But in a distributed system
with largest delays and the nodes that have domain queue
average outdated gives poor result. This phenomenon was
first observed by the load balancing group at the University of
New Mexico [7]. So the G values are set in the way that yields
an optimal result. Another step that is added in the above
algorithm is to test the node availability. It checks both node
availability as well as the amount of waiting times it can
receive. The node executing the ALS is permitted to send the
tasks to the neighbors after receiving the acknowledgement
specifying the amount of the load they can be able to process..
The time complexity of the proposed algorithm is O(d) shown
in table 1.

Table 1: ALS Operations

Sno Actions Operation

Quantity,
(d is the

number of
neighbors)

1
Compute
average
queue size

Addition
Division

Multiplication

d+1
d
d

2 Compute Ei Subtraction
Multiplication

1
1

3

Determine
the
participant
nodes

Comparison d

4 Compute ௜݂௝
′

Subtraction
Division

Multiplication

d+1
d+1
d+1

5 Compute ௜݂௝
′′

Subtraction
Division

Multiplication

1
1
3

6 Compute T୧୨ Multiplication d

7 Message to
node Transfer d

IJ-13-15

8 Compute
nowReceived

Addition
Comparison

Message
Transfer

d
d
d

V. SIMULATION
To test the performance of the newly proposed load-

balancing policy, a Java program is developed to test the
performance of the existing and proposed algorithms. The
existing algorithms ELISA and DOLB are used to compare
with the proposed algorithm ALS. The DOLB is very much
related to the above problem. The initial settings and
parameters are shown in Table 2. The average network
transfer rates between each node are represented by the cost
adjacency matrix.

 The proposed algorithm ALS is tested with DOLB &
ELISA for the gain values G between 0.3 and 1 with 0.1
incremental steps. The ߙ parameter introduced in the previous
section was set to 0.05 by running several experiments and
observing the behavior of the tsi parameter. Note that, the first
time the load-balancing process was triggered after 40s from
the start of the system and then the strategy executed regularly
at 20s interval.

Table 2: Simulation Parameters
Number of nodes 16,32,64
Initial task distribution [100…1000] tasks distributed

randomly at each node
Average task processing
time(ݏݐ in ms)

Processing time is randomly
distributed in a range
[300…800]

Size of task(in KB) 100

Load balancing instance First time the load balancing
was triggered at 5s then for
every 10s the load balancing
is initiated

Bandwidth distribution
(݀௜௝)

A cost adjacency matrix
denotes the transfer rate
between the nodes.It is
uniformly distributed in the
range [1..5] Mbps

The above constraint ensures that the ts parameter
had enough time to adapt and reflect the current computational
power of each node before the occurrence of any task
migration between the nodes. Note that the ratio ௧௦೔

௧௦ೕ
 are

fixed over time. The proposed and rival methods were
evaluated by conducting 10 runs for each value of G between
0.3 and 1 with 0.1 incremental step.

Figure 1: Completion time averaged over 5 runs vs different
gain values K. The graphs shows the results of three policies
for system size=64.

Figure 2: Completion time averaged over 5 runs vs. different
gain values K. The graphs shows the results of three policies
for system size=32.

Figure 3: Total number of tasks exchanged averaged over 5
runs Vs different Gain values K. The graphs shows the
performance of the three policies for system size=16.

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
ve

ra
ge

 ta
sk

 co
m

pl
et

io
n

tim
e(

in
 m

s)

Gain values (k)

ALS

DOLB

ELISA

0
20
40
60
80

100
120
140
160

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
ve

ra
ge

 T
as

k
C

om
pl

et
io

n
tim

e
(in

 m
s)

Gain Values (k)

ALS

DOLB

ELISA

0
50

100
150
200
250
300
350
400
450

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
U

m
be

r o
f

Ta
sk

s e
xc

ha
ng

ed

Gain values (k)

ALS

DOLB

ELISA

IJ-13-15

VI. CONCLUSION
The proposed algorithm is better when compared to the
existing algorithms in the literature. In simulation, we
assumed the tasks with no precedence and with no deadlines.
However, in heterogeneous systems, load balancing technique
must take into account of OS scheduling policies like round
robin, priority scheduling and to consider the deadline of the
task, In this paper, these factors are not considered while
designing the proposed algorithm. As a future work, these
factors must be taken into account in designing a load-
balancing algorithm.

References
[1] M. M. Hayat, S . Dhakal, C. T. Abdallah I ‘Dynamic time

delay models for load balancing. Pan 11: Stochastic analysis
of the effect of delay uncertainty, CNRS-NSF Workshop:
Advances in Control of tirne-delay Systems, Paris France,
January 2003.

[2] J. Ghanem, C. T. Abdallah, M. M. Hayat, S. Dhakal, J.D
Birdwell, J. Chiasson, and Z. Tang. Implementation of load
balancing algorithms over a local area network and the internet.
43rd IEEE Conference on Decision and Control, Submitted,
Bahamas, 2004.

[3] L. Anand, D. Ghose, and V. Mani, “ELISA: An Estimated Load
Information Scheduling Algorithm for Distributed Computing
Systems,” Int’l J. Computers and Math With Applications, vol.
37, no. 8, pp. 57-85, Apr. 1999.

[4] WEI Wen-hong, XIANG Fei, WANG Wen-feng, et al. Load
Balancing Algorithm in Structure P2P Systems[J],Computer
Science, 2010, 37(4):82-85.

[5] Khalifa, A.S.; Fergany, T.A.; Ammar, R.A.; Tolba, M.F,”
Dynamic online Allocation of Independent tasks onto
heterogeneous computing systems to maximize load balancing,”
IEEE International Symposium on Signal Processing and
Information Technology, ISSPIT 2008,Pages:418 – 425.

[6] Andras Veres and Miklos Boda. The chaotic nature of TCP
congestion control. In Proceedings of the IEEE Infocom, pages
1715-1723, 2000.

[7] J. Chiasson, J. D. Birdwell, Z. Tang, and C.T. Abdallah. The
effect of time delays in the stability of load balancing algorithms
for parallel computations.IEEE CDC, Maui, Hawaii, 2003.

[8] Ming wu and Xian-He sun, A General Self Adaptive Task
Scheduling System for Non Dedicated Heterogeneous
Computing, In Proceedings of IEEE International Conference on
Cluster Computing, PP 354-361, Dec 2003.

[9] Z. Zeng and B. Veeravalli, "Design and Performance
Evaluation of Queue-and-Rate-Adjustment Dynamic Load
Balancing Policies for Distributed Networks", presented at
IEEE Trans. Computers, 2006, pp.1410-1422.

[10] K. Lu, R. Subrata, and A. Y. Zomaya, Towards decentralized
load balancing in a computational grid environment, in:
Proceedings of the first International Conference on Grid and
Pervasive Computing, 2006, Vol. 3947, pp. 466-477, Springer-
Verlag Press.

[11] Acker, D., Kulkarni, S. 2007. A Dynamic Load Dispersion
Algorithm for Load Balancing in a Heterogeneous Grid System.
IEEE Sarnoff Symposium, 1- 5.

[12] M. Luczak and C. McDiarmid. On the maximum queue length
in the supermarket model. The Annals of Probability,
34(2):493–527, 2006.

[13] Zhou, S. (1987). An Experimental Assessment of Resource
Queue Lengths as Load Indices. Proc. Winter USENIX Conf.,
p.73-82.

[14] J. Ghanem, C. T. Abdallah, M. M. Hayat, S. Dhakal, J.D
Birdwell, J. Chiasson, and Z. Tang. Implementation of load
balancing algorithms over a local area network and the internet.
43rd IEEE Conference on Decision and Control, Submitted,
Bahamas, 2004.

P.Neelakantan received B.E(CSE) from
Kuvempu University and M.E (CSE) from
Madurai Kamaraj University in the year
2002.Presently he is pursuing Ph.d at SV
University, Tirupati.

 Dr. A. Rama Mohan Reddy received the B. Tech. from
JNT University, Hyderabad in 1986, M. Tech degree in
Computer Science from National Institute of Technology
in 2000 Warangal and Ph. D in Computer Science and
Engineering in 2008 from Sri Venkateswara University,
Tirupathi, Andhra Pradesh, India. He worked as Assistant
Professor, Associate Professor of Computer Science and
Engineering, Sri Venkateswara University College of
Engineering during the period 1992 and 2005. Presently,
working as Professor of Computer Science and
Engineering, Sri Venkateswara University College of
Engineering. He has 28 years of Industry and Teaching
experience. He is life member of ISTE and IE. Research
interests include Software Architecture, Software
Engineering and Data Mining. He has 10 international
publications and 14 international conference Publications
at International and National level.

