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Abstract—This study explores the concept of multiuser mobile 
edge computing (MEC) networks aided environmental severity 
monitoring for power grid equipment, where an MEC server 
facilitates the computation of tasks from N users via wireless 
transmission in the presence of Nakagami-m fading channels. 
To analyze the system performance, we first define the system 
outage probability based on energy consumption, where the out-
age event is triggered when the energy required to complete the 
users’ tasks exceeds a specified threshold. We then develop an 
analytical expression for the system outage probability in Nak-
agami-m fading channels and provide a high signal-to-noise ra-
tio (SNR) asymptotic analysis. Additionally, we optimize the sys-
tem performance by adjusting the task offloading ratios. Finally, 
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nels validate the proposed methods. The results show that the 
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I. INTRODUCTION

Information technology has rapidly evolved, leading to the
speedy upgrading of mobile communication networks. The
fifth-generation (5G) mobile communication network has now
been extensively implemented and it is readily accessible to
the public, providing an efficient support for Internet of Things
(IoT) networks. The key applications of 5G include enhanced
mobile broadband, low-latency and high-reliability transmis-
sion, and massive machine-type communication. These appli-
cations not only serve industries like the industrial Internet of
Things, augmented reality (AR) and virtual reality (VR), but
also drive the advancement of other information technologies
such as big data, cloud computing, blockchain, and the meta-
universe.

Under the tide of thriving digital economy, the future be-
yond 5G (B5G) and sixth-generation (6G) networks face new
challenges from the demand on the massive communication
and massive computing [1]–[4]. According to the National
Data Resource Survey Report, the global data volume was
67ZB in 2021, 80% among which was wireless data, with
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an average growth rate exceeding 26% in the past three
years, which poses high requirements on the design of the
future B5G/6G network [5]–[8]. In particular, with the rapid
development of artificial intelligence, how to train AI models
from massive data to intelligently complete computing tasks
is the application demand of industries such as the industrial
Internet of Things and an important landing point for B5G/6G
industrial applications. However, as the computing power and
data continue to grow, the number of parameters in the AI
models is also showing explosive growth. Taking the ChatGPT
model as an example, which has swept the world recently, ,
the number of parameters and pre-training data volume of each
generation of GPT model are exploding, which can be called
“the bigger, the better.” The GPT-2 published in February 2019
had 150 million parameters and a pre-training data volume of
approximately 5GB, while the GPT-3 in May 2020 had 175
billion parameters and a pre-training data volume of 40G. The
ChatGPT model launched in November 2022 has a parameter
volume of 100 billion.

The European Telecommunications Standardization Associ-
ation introduced the mobile edge computing (MEC) architec-
ture in 2014 to address the difficulties posed by the massive
amount of communication data and computing tasks in com-
munication networks. MEC integrates edge computing into the
mobile network architecture, moving storage and computing
services from cloud data centers to the edge of the mobile
network, such as base stations and wireless access points.
This provides local access to computing, storage, network,
and communication resources, reducing latency and enhancing
user experience. MEC has become a critical technology for
5G and B5G/6G networks, offering ultra-low latency, high
energy efficiency, and reliable wireless transmission services.
According to Cisco’s global cloud index data, in 2021, the
world generated 106 ZB of data traffic, with only 21 ZB data at
the center. Over 70% of global traffic requires communication
and computation from the edge devices. With the support
of edge computing architecture, the future B5G/6G network
will be able to integrate with artificial intelligence, enabling
ultra-strong communication, computation, and intelligence ca-
pabilities. This integration will enable human-machine-object
interconnectivity, upgrading information transmission to in-
tegrated information perception-communication-computation-
control, and supporting intelligent edge network applications
such as smart cities, industrial automation, autonomous driv-
ing, and smart homes.

This article delves into the topic of multiuser MEC net-
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Fig. 1. System model of multiuser MEC networks in Nakagami-m fading
channels.

works, where N users’ computational tasks are processed by
a MEC server through wireless transmission in Nakagami-m
fading environments. The system outage probability, taking
into account both communication and computing energy con-
sumption, is firstly defined, with an outage occurring if the
energy consumption exceeds a given threshold. The system
performance is then analyzed through an analytical expression
for the system outage probability and an asymptotic expression
with high signal-to-noise ratio (SNR). The system is further
optimized by adjusting task offloading ratios. Numerical and
simulation results are presented to validate the system analysis
and optimization in the multiuser MEC network, providing
valuable insights for edge computing system design.

II. SYSTEM MODEL

The system model of multiuser MEC networks in
Nakagami-m fading channels is displayed in Fig. 1. In this
model, there are N mobile users who require offloading of
their computational tasks to a nearby computing access point
(CAP). In the considered system, the user Un (1 ≤ n ≤ N )
has the computational task, whose size is Dn and can be
computed at local or the CAP. We use {αn | n = 1, 2, . . . , N}
to represent the offloading ratio of user Un. The offloading
is through the wireless channels in the networks, where we
consider a general fading model of Nakagami-m channel
to model the wireless links in this system [9]–[12]. In the
following, we will discuss the computing and communication
process for calculating the tasks.

Firstly, as the local computation part is (1−αn), its latency
can be given by [13]–[16]

Tl =
(1− αn)µDn

Cn
, (1)

where µ is required CPU cycle for each bit of the task,
Cn is the local computational capability of Un. The energy
consumption of the local computation part can be given by
[17]–[19]

El = (1− αn)µDnC
2
n. (2)

As for the αn part of the task, it first needs to be transmitted
to the CAP through the wireless channel gn. The achievable
data rate of user Un can be written as [20], [21]

Rn = B log2


1 +

Pn|gn|2

σ2


(3)

where B is the wireless bandwidth of the transmission link,
Pn is the transmit power of Un, and gn ∼ Naka(m,λn)
is the Nakagami-m fading channel. Moreover, σ2 is used to
denote the AWGN variance. With Rn, we can then have the
transmission latency of Un as

Tt =
αnDn

Rn
. (4)

The corresponding energy consumption of the task transmis-
sion can be written as [22]

Et = PnTt. (5)

The CAP with the computational capability of CCAP will
then calculate the offloaded task. Specifically, the CAP allocate
its computational capability to all N users, where βn is the
allocation ratio. Therefore, we can have the CAP computation
latency and energy consumption as

TCAP =
αnµDn

βnCCAP
. (6)

ECAP = αnµDn(βnCCAP )
2. (7)

According to (1), (4), and (6), we have the total latency for
executing the computational task of Un task as

Tn
total = max{Tl, Tt + TCAP }. (8)

According to (2), (5), and (7), we have the total energy
consumption for executing the computational Un’s task as

En
total = El + Et + ECAP . (9)

III. SYSTEM OUTAGE PROBABILITY ANALYSIS

We proceed to analyze the outage performance on the
multiuser MEC networks via Nakagami-m fading channels.
Firstly, we give the definition of the outage for user Un, where
the outage occurs when the computing energy consumption is
higher than a given threshold Eth, given by

Pn
out = Pr [En

total ≥ En
th] , (10)

where Eth is the given energy consumption threshold.

A. Analytical expression

With the given offloading ratio and computation capability
allocation ratio, the local computation energy consumption and
the CAP computation consumption is known. We can write the
outage probability for user Un as

Pn
out = Pr [En

l + En
t + En

CAP ≥ Eth] (11)

= Pr


 PnαnDn

B log2


1 + Pn|gn|2

σ2

 ≥ Eth − En
l − En

CAP


 .

(12)
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By using some transformation, we can further write the
expression of Pn

out as,

Pn
out = Pr


log2


1 +

Pn|gn|2

σ2


≤ PnαnDn

B(Eth − En
l − En

CAP )



(13)

= Pr


|gn|2 ≤ 2

PnαnDn
B(Eth−En

l
−En

CAP
) − 1

Pn/σ2


 . (14)

As the wireless channels between the users and CAP expe-
rience Nakagami-m fading, we can write the distribution of
|gn|2 as,

f|gn|2(x) =
mmxm−1

λm
n Γ(m)

e−
mx
λn , (15)

where Γ(·) is the Gamma function. From the distribution of
|gn|2 in (15), we can write the cumulative density function
(CDF) of |gn|2 as,

F|gn|2(x) =

 x

0

f|gn|2(x)dx, (16)

=
mm

λm
n Γ(m)

 x

0

xm−1e−
mx
λn dx, (17)

= 1− e−
mx
λn

m−1
k=0

1

k!

mx

λn

k

. (18)

By applying the above result into (14), we can obtain the
analytical expression of Pn

out as

Pn
out = 1− e−

m 2

PnαnDn
B(Eth−En

l
−En

CAP
) −1

Pn/σ2

λn

×
m−1
k=0

1

k!


m
2

PnαnDn
B(Eth−En

l
−En

CAP
) − 1

Pnλn/σ2

k

. (19)

From the above equation, we can write the system average
outage probability as,

Pout =
1

N

N
n=1

Pr [En
total ≥ Eth] (20)

=
1

N

N
n=1

Pn
out (21)

=
1

N

N
n=1


1− e−

m 2

PnαnDn
B(Eth−En

l
−En

CAP
) −1

Pn/σ2

λn

×
m−1
k=0

1

k!


m
2

PnαnDn
B(Eth−En

l
−En

CAP
) − 1

Pnλn/σ2

k

(22)

B. Asymptotic expression

To get some more insights on the system design of multiuser
MEC networks with Nakagami-m fading channels, we further

derive the asymptotic expression of Pout with high SNR.
Specifically, the asymptotic F|gn|2(x) is,

F|gn|2(x) ≃
mm

Γ(m)

� x

λn

m
. (23)

From the asymptotic F|gn|2(x), we can write the asymptotic
expression of outage probability as,

Pout ≃
1

N

N
n=1

mm

Γ(m)


2

PnαnDn
B(Eth−En

l
−En

CAP
) − 1

λnPn/σ2




m

, (24)

= P asym
out , (25)

where the approximation lim
v→0

e−v ≃ 1 − v is employed. We

can get some insights from P asym
out , in the following,

• The system performance improves with a larger value of
B, as a larger bandwidth can help offload the computa-
tional tasks to the CAP and reduce the energy consump-
tion.

• The system outage probability becomes smaller with a
larger value of Pn, as a larger transmit power can help
reduce the offloading latency effectively.

• The value of Pout becomes smaller with the value of λn,
as the channel quality is enhanced by the increase of λn.

• The system performance is improved with the value of m,
due to the improved channel quality of wireless channels.

IV. SYSTEM OPTIMIZATION

To enhance the system performance of the multiuser MEC
networks with Nakagami-m fading channels, we proceed to
optimize the system performance by allocating the computa-
tional tasks between the users and CAP. From the expression
of P asym

out , we optimize the offloading ratios {αn|1 ≤ n ≤ N}
as,

P1: min
{αn|1≤n≤N}

1N
N

n=1
mm

Γ(m)


2

PnαnDn
B(Eth−En

l
−En

CAP
) −1

λnPn/σ2

m

,(26a)

s.t. αn ∈ [0, 1]. (26b)

Considering that the users can offload their computational
tasks independently, i.e., the task offloading of users does
not interact with each other, we can equivalently write the
optimization problem P1 as,

P2: min
{αn|1≤n≤N}

2
PnαnDn

B(Eth−En
l

−En
CAP

) − 1

λnPn/σ2
, (27a)

s.t. αn ∈ [0, 1]. (27b)

By further analyzing the above optimization problem P2, we
can find that such optimization is also equivalent to minimizing
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Fig. 2. System outage probability versus the transmit SNR.

the value of PnαnDn

B(Eth−En
l −En

CAP ) , which is equal to

min
( PnαnDn

B(Eth − En
l − En

CAP )

)

= min
( αn

Eth − (1− αn)µDnC2
n − αnµDn(βnCCAP )2

)
,

(28)

= min
( αn

Eth − µDnC2
n + αnµDnC2

n − αnµDn(βnCCAP )2

)
,

(29)

= min
( 1

Eth−µDnC2
n

αn
+ µDnC2

n − µDn(βnCCAP )2

)
. (30)

From the above equation, we can find that the optimal value
of αn is equal to 0 if Eth − µDnC

2
n > 0 holds, or equal to 1

otherwise, i.e.,

α∗
n =

{
0, If Eth − µDnC

2
n > 0

1, Else
(31)

In this way, we can solve the optimization problem of finding
the optimal offloading ratios for the considered system.

V. NUMERICAL AND SIMULATION RESULTS

In this section, results from numerical and simulation stud-
ies are presented for multiuser MEC networks operating in
Nakagami-m fading channels. Unless stated otherwise, the
value of αn is assumed to be 0.5. The number of users, N ,
is set to 5 and 10, respectively. Each user is assigned a task
size of 30 Mb, and user Un has a computational capability of
0.01 GHz while the CAP has a computational capability of
0.5 GHz. The transmit power at each user is set to 1 W, the
variance of AWGN is 0.001, and µ is set to 10. The average
channel gain in the Nakagami-m fading channels is set to unity
with m = 1, although the results can be easily extended to
other values of m. We set the energy consumption threshold
to 3.

Fig.2 and Table 1 depict the value of outage probability on
the multiuser MEC networks with N = 5, where the transmit
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Fig. 3. System outage probability versus the bandwidth B.

SNR changes in [10, 40]dB. As seen from Fig.2 and Table
1, the value of system outage probability drops swiftly when
the transmit SNR becomes large. The phenomenon of that is
due to the fact that increasing SNR can effectively enhance
the channel capacity and improve the network transmission
performance, which can essentially reduce the system outage
probability, enhancing the users’ quality of experience in
further. Moreover, the analytical results and the asymptotic
results can both fit the simulation results very well, which
shows the availability of the derived closed-form formula for
the system outage probability.

The system outage probability on multiuser MEC networks
is illustrated in Fig. 3 and Table 2 in relation to the system
total bandwidth Btotal. The total wireless bandwidth ranges
from 5 MHz to 45 MHz, with each user’s wireless bandwidth
being equal to Btotal/N . The results of the figure and table
show that the outage probability decreases with increasing
wireless bandwidth, due to the higher transmission rate. The
consistency between the simulation, analytical, and asymptotic
results confirms the accuracy of (22) and (24). Additionally, it
can be seen that the outage probability with M = 5 is lower
than that with M = 10 because fewer users receive more
bandwidth resources, thus improving the system performance.

In Fig. 4 and Table 3, the system outage probability for
different users in multiuser MEC networks is plotted as the
task size varies from 20 Mb to 40 Mb, with N set to 5
and 10, respectively. As shown in Fig. 4, when N = 5,
the simulation, analytical, and asymptotic results all have
similar outage probabilities. However, as N increases to 10,
the asymptotic result has a lower outage probability compared
to the others, particularly for larger task sizes. Additionally, the
outage probability for N = 10 is greater than that of N = 5,
indicating that an increase in the number of users exacerbates
the outage. Furthermore, the outage probability increases as
the task size increases due to the increased communication
resources required to complete the transmissions, resulting in
a higher probability of failure.

The system outage probability on multiuser MEC networks
is shown in Fig.5 and Table 4 with respect to the varying
energy threshold Eth, which ranges from 1.8 to 3.4 for N
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Table 1 Numerical outage probability versus the transmit SNR.
SNR 10 15 20 25 30 35 40
Pout,sim

(N=5)
0.6650 0.2924 0.1036 0.0339 0.0108 0.0034 0.0010

Pout,ana

(N=5)
0.6651 0.2924 0.1036 0.0340 0.01088 0.0034 0.0010

Pout,asy

(N=5)
/ 0.3459 0.1094 0.0345 0.0109 0.0034 0.0010

Pout,sim

(N=10)
0.9999 0.9585 0.6343 0.2727 0.0956 0.0312 0.0100

Pout,ana

(N=10)
0.9999 0.9585 0.6344 0.2725 0.0957 0.0313 0.0100

Pout,asy

(N=10)
/ / / 0.3182 0.1006 0.0318 0.0100

Table 2 Numerical outage probability versus the bandwidth B.
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Table 3 Numerical outage probability versus the task size Dn.
Dn 20 25 30 35 40
Pout,sim

(N=5)
0.0034 0.0060 0.0108 0.0202 0.0398

Pout,ana

(N=5)
0.0034 0.0060 0.0108 0.0202 0.0399

Pout,asy

(N=5)
0.0034 0.0060 0.0109 0.0204 0.0407

Pout,sim

(N=10)
0.01601 0.0386 0.0956 0.2415 0.5637

Pout,ana

(N=10)
0.01605 0.0385 0.0957 0.2416 0.5639

Pout,asy

(N=10)
0.01618 0.0393 0.1006 0.2766 0.8299

Table 4 Numerical outage probability versus the energy consumption
threshold Eth.

Eth 1.8 2.2 2.6 3 3.4
Pout,sim

(N=5)
0.1895 0.0453 0.0191 0.0108 0.0071

Pout,ana

(N=5)
0.1895 0.0454 0.0193 0.0108 0.0071

Pout,ast

(N=5)
0.2101 0.0465 0.0194 0.0109 0.0071

Pout,sim

(N=10)
0.9999 0.6410 0.2252 0.0956 0.0502

Pout,ana

(N=10)
0.9999 0.6409 0.2252 0.0957 0.0502

Pout,asy

(N=10)
/ / 0.2551 0.1006 0.0515

Mb to 40 Mb, with N set to 5 and 10 respectively. The
figure depicts two offloading schemes, the equal allocation
and the optimized allocation (as shown in (31)). The results
in Fig. 6 indicate that the optimized offloading proposed in
the paper outperforms the equal offloading scheme for both
N = 5 and N = 10, as it effectively utilizes the computing
resources between the users and CAP, resulting in reduced
energy consumption. Additionally, the system performance
deteriorates with an increase in Dn or N due to the increased
burden from intensive tasks, leading to a higher Pout value.

VI. CONCLUSIONS

In this article, we improved the performance of multiuser
MEC networks by analyzing the system. The computational
tasks were transmitted to the MEC server over Nakagami-
m fading channels. To define the system computing outage
probability, we considered both the energy consumption from
communication and computing, and defined the outage as
occurring if the energy consumption is larger than the prede-
termined threshold. We analyzed the system performance by
determining the analytical expression for the system outage
probability and presenting an asymptotic expression for high
SNR. Additionally, we optimized the system performance by
adjusting the task offloading ratios. Numerical and simulation
results were presented to validate our analysis and optimiza-
tion, providing insights into designing edge computing systems
in multiuser MEC networks.

Acknowledgements
This work was supported by Science and Technology

Project of China Southern Power Grid Co., Ltd. (No.
GZHKJXM20190110).

REFERENCES

[1] D. Chandra, P. Botsinis, D. Alanis, Z. Babar, S. X. Ng, and L. Hanzo,
“On the road to quantum communications,” Infocommunications Jour-
nal, vol. 14, no. 3, pp. 2–8, 2022, DOI: 10.36244/ICJ.2022.3.1.

[2] S. S. Mahdi and A. A. Abdullah, “Enhanced security of software-defined
network and network slice through hybrid quantum key distribution pro-
tocol,” Infocommunications Journal, 2022, DOI: 10.36244/ICJ.2022.3.2.

[3] Z. Huang, L. Bai, X. Cheng, X. Yin, P. E. Mogensen, and X. Cai,
“A non-stationary 6g V2V channel model with continuously arbitrary
trajectory,” IEEE Trans. Veh. Technol., vol. 72, no. 1, pp. 4–19, 2023,
DOI: 10.1109/TVT.2022.3203229.

[4] A. E. Haddad and L. Najafizadeh, “The discriminative discrete basis
problem: Definitions, algorithms, benchmarking, and application to
brain’s functional dynamics,” IEEE Trans. Signal Process., vol. 71, pp.
1–16, 2023, DOI: 10.1109/TSP.2023.3238281.
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Mb to 40 Mb, with N set to 5 and 10 respectively. The
figure depicts two offloading schemes, the equal allocation
and the optimized allocation (as shown in (31)). The results
in Fig. 6 indicate that the optimized offloading proposed in
the paper outperforms the equal offloading scheme for both
N = 5 and N = 10, as it effectively utilizes the computing
resources between the users and CAP, resulting in reduced
energy consumption. Additionally, the system performance
deteriorates with an increase in Dn or N due to the increased
burden from intensive tasks, leading to a higher Pout value.

VI. CONCLUSIONS

In this article, we improved the performance of multiuser
MEC networks by analyzing the system. The computational
tasks were transmitted to the MEC server over Nakagami-
m fading channels. To define the system computing outage
probability, we considered both the energy consumption from
communication and computing, and defined the outage as
occurring if the energy consumption is larger than the prede-
termined threshold. We analyzed the system performance by
determining the analytical expression for the system outage
probability and presenting an asymptotic expression for high
SNR. Additionally, we optimized the system performance by
adjusting the task offloading ratios. Numerical and simulation
results were presented to validate our analysis and optimiza-
tion, providing insights into designing edge computing systems
in multiuser MEC networks.
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Table 3 Numerical outage probability versus the task size Dn.
Dn 20 25 30 35 40
Pout,sim

(N=5)
0.0034 0.0060 0.0108 0.0202 0.0398

Pout,ana

(N=5)
0.0034 0.0060 0.0108 0.0202 0.0399

Pout,asy

(N=5)
0.0034 0.0060 0.0109 0.0204 0.0407

Pout,sim

(N=10)
0.01601 0.0386 0.0956 0.2415 0.5637

Pout,ana

(N=10)
0.01605 0.0385 0.0957 0.2416 0.5639

Pout,asy

(N=10)
0.01618 0.0393 0.1006 0.2766 0.8299

Table 4 Numerical outage probability versus the energy consumption
threshold Eth.

Eth 1.8 2.2 2.6 3 3.4
Pout,sim

(N=5)
0.1895 0.0453 0.0191 0.0108 0.0071

Pout,ana

(N=5)
0.1895 0.0454 0.0193 0.0108 0.0071

Pout,ast

(N=5)
0.2101 0.0465 0.0194 0.0109 0.0071

Pout,sim

(N=10)
0.9999 0.6410 0.2252 0.0956 0.0502

Pout,ana

(N=10)
0.9999 0.6409 0.2252 0.0957 0.0502

Pout,asy

(N=10)
/ / 0.2551 0.1006 0.0515

Mb to 40 Mb, with N set to 5 and 10 respectively. The
figure depicts two offloading schemes, the equal allocation
and the optimized allocation (as shown in (31)). The results
in Fig. 6 indicate that the optimized offloading proposed in
the paper outperforms the equal offloading scheme for both
N = 5 and N = 10, as it effectively utilizes the computing
resources between the users and CAP, resulting in reduced
energy consumption. Additionally, the system performance
deteriorates with an increase in Dn or N due to the increased
burden from intensive tasks, leading to a higher Pout value.

VI. CONCLUSIONS

In this article, we improved the performance of multiuser
MEC networks by analyzing the system. The computational
tasks were transmitted to the MEC server over Nakagami-
m fading channels. To define the system computing outage
probability, we considered both the energy consumption from
communication and computing, and defined the outage as
occurring if the energy consumption is larger than the prede-
termined threshold. We analyzed the system performance by
determining the analytical expression for the system outage
probability and presenting an asymptotic expression for high
SNR. Additionally, we optimized the system performance by
adjusting the task offloading ratios. Numerical and simulation
results were presented to validate our analysis and optimiza-
tion, providing insights into designing edge computing systems
in multiuser MEC networks.
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