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Abstract—In recent years, the application of adapter modules
in large language models proved to be successful in reducing
computing and memory costs during fine-tuning. In our paper,
we apply adapters to the field of automatic speech recognition.
Specifically, we add adapters to different pre-trained speech
recognition models to evaluate their efficiency in cross-language
transfer learning. In this study, the evaluations are extended to
GPU memory consumption, training duration, and recognition
accuracy. By comparing the effects of adapters added to different
models, we further explore the impact of whether the founda-
tional model was (pre-) trained in the target language.
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I. INTRODUCTION

W Ith the implementation of neural networks in speech
recognition, significant improvements have been

achieved in neural speech-to-text (STT) models. When trans-
former [1] was initially proposed, it made significant progress
mainly in machine translation tasks. Conformer [2] is an
improvement and extension of the transformer model, used pri-
marily in speech recognition tasks. Based on the LibriSpeech
benchmark [3], Gulati et al. conducted experiments based on
three different sizes of conformer models (small, medium,
and large) [2]. The experimental results are improved by
increasing the model parameters. The large-size Conformer
model achieved excellent results with a word error rate (WER)
of 2.1%/4.3% without using a language model and 1.9%/3.9%
with an external language model on test/testother dataset. Fast
Conformer [4] is a redesigned Conformer model with a novel
downsampling schema, which is 2.8 times faster than the
Conformer model. Fast Conformer is a newly proposed model,
that has not been widely used in the training of low-resource
data sets. Whisper [5] is a weakly-supervised model that
can target multiple languages and tasks. The Whisper model
has been trained on multiple language datasets, including
Hungarian. Therefore, in automatic speech recognition tasks,
high-quality results on specific distributions can be obtained
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without fine-tuning the Whisper model based on a Hungarian
dataset.

Based on the English dataset, all the above models can
achieve a lower word error rate (WER). For relatively low-
resource languages such as Hungarian, direct training of
ASR neural models from scratch is both time-consuming and
may not result in optimal performances. Therefore, cross-
lingual transfer learning methods are often applied for speech
recognition tasks, especially for low-resource datasets ([6],
[7], [8], [9], [10]). It means that when fine-tuning the model
parameters, some pre-trained models are used to help models
adapt to the distributional features of the language faster,
e.g., fine-tuning the pre-trained English model based on the
Hungarian dataset to obtain better WER results. However, as
the number of model parameters increases, the cost required to
fine-tune and train the model increases accordingly. Therefore,
we need an approach to achieve better recognition performance
of the model in a shorter time and with lower memory
consumption.

To address these issues, especially for large-scale models,
the Parameter Efficient Fine-Tuning (PEFT) method [11] has
been proposed. Adapter is one of the core fine-tuning methods
of the PEFT technique, which is a new module added between
layers of a pre-trained network [11]. Adapter modules have
two main features: a small number of parameters, and a
near-identity initialization [12]. In every training step, the
parameters of the original foundational model remain frozen,
only all the parameters in the adaptors module are tuned.
However their number is relatively small as compared to
the foundational model parameters. This method effectively
reduces the consumption of GPU memory in the training
process. An increasing number of adapter types have been
proposed for different types of basic models in ASR [13],
[14]. In [15], Hou, et al. proposed a new adapter algorithm-
based transformer structure for cross-lingual transfer learning,
SimAdapter, and MetaAdapter, which was applied to param-
eter efficient cross-lingual speech adaptation. To explore the
effect of adapters applied to the basic model, in [16], adapters
were applied to both Transformer and Conformer architectures
to comprehensively evaluate the adapter performance within
the context of children’s ASR. Huang, et al. [17] demonstrated
that integrating adapters into End-to-End model can effectively
mitigate catastrophic forgetting (CF), which is a common
drawback of improving models through fine-tuning.

In this paper, we focus on studying the effect of adapters
applied to the foundational model in cross-lingual transfer
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TABLE I
CHARACTERISTICS OF DATABASE (BEA-BASE + COMMONVOICE).

BEA-Base CV12
train-114 dev-repet dev-spont eval-repet eval-spont test

Length [hours] 71.2 0.65 4.02 0.95 4.91 6.80
Num of speakers 114 10 10 16 16 251
Num of segments 76 881 568 4 893 858 5 69 4 871
Num of characters 3.1M 28 467 154 994 43 448 197 738 250 709
Num of words 0.56M 4 110 27 939 6 229 35 178 35 485

learning based on the Hungarian dataset BEA-Base [18].
Meanwhile, by comparing different foundational models, we
explore whether a foundational model pre-trained in the target
language affects the effectiveness of adapter addition. Founda-
tional models used in this paper are mainly Conformer-CTC,
Fast Conformer [4], and Whisper [5]. All experiments are
divided into two main aspects: first, the adapter module is
added directly to the pre-trained model. Secondly, the adapter
module is added to the model that has been fully fine-tuned.
With these two types of experiments and using three different
foundational models, we conclude that adapters significantly
reduce GPU memory consumption. The application of adapter
modules provided better results than full fine-tuning only in the
Whisper model, suggesting that adding the adapter to models
(pre-) trained already on the target language can perform
better.

II. DATABASE AND BASELINE

A. Database

Throughout the experiment, the training and test dataset
used is the Hungarian benchmark dataset BEA-Base [18].
The BEA-Base dataset contains both spontaneous speech and
conversations with repeated elements, making it suitable for
ASR research. The detailed dataset information of BEA-
Base is shown in Table I, including training set train-114,
verification set dev-spont, and test set eval-spont. In addition,
the datasets include the repeated speech datasets dev-repet
and eval-repet, as shown in Table I. To assess the general-
ity of the model, an additional test dataset CommonVoice
(CV) Hungarian v12.0 [19] was used in the study, which
differs from BEA-Base in terms of recording conditions and
speaker/speech diversity.

B. Fine-tuning baseline

The experimental baseline model comes from the pa-
per [20], and the specific parameters can be referred to as
the parameter setting in the paper. The baseline model is
Conformer-CTC ([21], [22]) model from NeMo toolkit v1.621.
Conformer-CTC is a speech recognition model that combines
Conformer architecture [2] and Connectionist Temporal Clas-
sification (CTC) [21] technology. The sizes of the Conformer-
CTC model cited in this article are medium and large. The pre-
trained model is in English, and the fine-tuning process uses
the Hungarian dataset train-114 from BEA-Base for training.

1https://github.com/NVIDIA/NeMo/tree/v1.6.2

The results are shown in the first row of the two Conformer
models in Table III.

The experiments were conducted on two distinct server
configurations. The first configuration employed dual A6000
NVIDIA graphics cards, specifically designed for large-scale
model experiments. Each card featured a substantial 48GB
of memory and consumed 300 watts of power. In contrast,
the second configuration utilized two NVIDIA Ge-Force GTX
1070 graphics cards tailored for lighter computational work-
loads. These cards were equipped with 8GB of memory,
making them suitable for less memory-demanding tasks.

III. INCORPORATING ADAPTERS INTO ENGLISH
PRE-TRAINED MODELS

In this section, Conformer-CTC model and adapter module
are selected, provided from NVIDIA’s NeMo toolkit v1.15.02.
There are two types of adapters used in experiments: Linear
Adapter [11] and Multi-Head Attention Adapter [23]. In the
subsequent exposition, the attention adapter is denoted as a
tiny-attention adapter. The name of the adapter module is taken
from the type of adapter function [12]. During fine-tuning
experiments with adapters, only the parameters of the adapter
module are updated, while the parameters of the original
language model remain frozen. The linear adapter is a simple
bottleneck structure feed-forward module [11]. Multi-Head
attention adapter is an adapter model that combines multi-head
self-attention [24] mechanism. The multi-head self-attention
mechanism allows the model to focus on different parts of
the input sequence separately under different contexts and
positions.

Fast Conformer (FC) [4] was also selected for this experi-
ment as the foundational model. But for the Fast Conformer
experiment, all pre-trained models are provided by NVIDIA’s
NeMo toolkit v1.22.03.

A. Pre-trained Model with Adapters

For the Conformer experiments, we used three sizes of
English pre-trained model provided by NVIDIA NeMo toolkit
(STT En Conformer-CTC XLarge4, STT En Conformer-CTC
Large5, STT En Conformer-CTC Medium6). During the ex-
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ASR research. The detailed dataset information of BEA-
Base is shown in Table I, including training set train-114,
verification set dev-spont, and test set eval-spont. In addition,
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1https://github.com/NVIDIA/NeMo/tree/v1.6.2

The results are shown in the first row of the two Conformer
models in Table III.

The experiments were conducted on two distinct server
configurations. The first configuration employed dual A6000
NVIDIA graphics cards, specifically designed for large-scale
model experiments. Each card featured a substantial 48GB
of memory and consumed 300 watts of power. In contrast,
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1070 graphics cards tailored for lighter computational work-
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There are two types of adapters used in experiments: Linear
Adapter [11] and Multi-Head Attention Adapter [23]. In the
subsequent exposition, the attention adapter is denoted as a
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(STT En Conformer-CTC XLarge4, STT En Conformer-CTC
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2https://github.com/NVIDIA/NeMo/tree/v1.15.0
3https://github.com/NVIDIA/NeMo/tree/v1.22.0
4https://catalog.ngc.nvidia.com/orgs/nvidia/teams/nemo/models/stt en

conformer ctc xlarge
5https://catalog.ngc.nvidia.com/orgs/nvidia/teams/nemo/models/stt en

conformer ctc large
6https://catalog.ngc.nvidia.com/orgs/nvidia/teams/nemo/models/stt en

conformer ctc medium

https://github.com/NVIDIA/NeMo/tree/v1.6.2
https://github.com/NVIDIA/NeMo/tree/v1.15.0
https://github.com/NVIDIA/NeMo/tree/v1.22.0
https://catalog.ngc.nvidia.com/orgs/nvidia/teams/nemo/models/stt_en_conformer_ctc_xlarge
https://catalog.ngc.nvidia.com/orgs/nvidia/teams/nemo/models/stt_en_conformer_ctc_xlarge
https://catalog.ngc.nvidia.com/orgs/nvidia/teams/nemo/models/stt_en_conformer_ctc_large 
https://catalog.ngc.nvidia.com/orgs/nvidia/teams/nemo/models/stt_en_conformer_ctc_large 
https://catalog.ngc.nvidia.com/orgs/nvidia/teams/nemo/models/stt_en_conformer_ctc_medium
https://catalog.ngc.nvidia.com/orgs/nvidia/teams/nemo/models/stt_en_conformer_ctc_medium
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TABLE II
CER(%) / WER(%) RESULTS BASED ON FINE-TUNING THE ENGLISH PRE-TRAINED CONFORMER AND FAST CONFORMER MODEL WITH LINEAR

ADAPTER ADDED.

Foundational Total num Trainable BEA-Base CV12
model params params dev-repet dev-spont eval-repet eval-spont test

FastConformer-Large 116M 0.52% 11.30 / 28.18 16.73 / 33.61 13.21 / 31.14 17.95 / 35.87 17.90 / 39.48
FastConformer-XLarge 610M 0.26% 8.84 / 23.50 14.40 / 31.11 10.56 / 26.70 15.14 / 32.25 16.13 / 37.28

Conformer-Medium 31.1M 0.98% 8.71 / 23.35 11.41 / 26.25 9.20 / 23.97 12.20 / 27.93 14.75 / 35.18
Conformer-Large 122M 0.50% 5.72 / 17.22 8.79 / 21.27 6.32 / 18.51 9.40 / 22.55 10.58 / 27.27
Conformer-XLarge 637M 0.25% 4.19 / 12.21 8.29 / 20.03 4.77 / 13.28 8.73 / 21.08 9.53 / 25.22

TABLE III
CER(%) / WER(%) RESULTS BASED ON TWO ROUNDS OF FINE-TUNING EXPERIMENTS ON ENGLISH PRE-TRAINED CONFORMER AND FAST

CONFORMER MODELS OF DIFFERENT SIZES.

Foundational Total num Trainable Adapter BEA-Base CV12
model params params type dev-repet dev-spont eval-repet eval-spont test

FastConformer-Large
115M 100.00% - 1.25 / 5.46 5.84 / 17.23 1.31 / 5.06 6.30 / 18.20 11.56 / 39.13
116M 0.52% Linear 1.25 / 5.43 5.83 / 17.18 1.30 / 5.02 6.32 / 18.19 11.55 / 39.02
115M 0.06% tiny-attention 1.23 / 5.36 5.82 / 17.20 1.30 / 5.05 6.28 / 18.19 11.54 / 39.00

FastConformer-XLarge
608M 100.00% - 1.45 / 6.08 5.80 / 17.63 1.68 / 6.39 6.03 / 18.32 9.76 / 35.80
610M 0.26% Linear 1.46 / 6.11 5.79 / 17.60 1.69 / 6.44 6.07 / 18.38 9.81 / 35.87
608M 0.03% tiny-attention 1.47 / 6.11 5.79 / 17.59 1.70 / 6.45 6.06 / 18.37 9.80 / 35.88

Conformer-Medium
30.5M 100.00% - 1.72 / 8.56 5.58 / 18.44 2.15 / 9.68 5.82 / 19.60 8.37 / 35.57
30.8M 0.99% Linear 1.72 / 8.54 5.58 / 18.44 2.15 / 9.65 5.83 / 19.61 8.36 / 35.57
30.7M 0.12% tiny-attention 1.72 / 8.56 5.58 / 18.44 2.15 / 9.68 5.82 / 19.60 8.37 / 35.57

Conformer-Large
121M 100.00% - 1.13 / 5.45 5.09 / 16.45 1.27 / 5.28 5.28 / 17.23 8.78 / 34.85
122M 0.50% Linear 1.13 / 5.47 5.10 / 16.45 1.26 / 5.25 5.28 / 17.22 8.77 / 34.80
121M 0.06% tiny-attention 1.14 / 5.47 5.12 / 16.42 1.28 / 5.30 5.30 / 17.34 8.75 / 34.79

periments, we only use linear adapter modules combined with
the English pre-trained model and then fine-tune the model
for experiments based on the Hungarian BEA-Base train-
114 dataset. For data augmentation, SpecAugment [25] and
speed perturbation were applied, using the same configuration
as [20]. Throughout the fine-tuning experimental process, for
each experiment, we set the batch size to 16, and the learning
rate to 0.001, and ran it on a GPU of the A6000 server for
100 epochs.

For the Fast Conformer experiments, we mainly used ex-
tra large and large-sized pre-trained English Fast Conformer
models as foundational models (STT En Fast Conformer-
CTC XLarge7, STT En Fast Conformer-CTC Large8) and
linear type adapter module. We use the same linear adapter
module as the Conformer model experiment above. During the
experiments, the batch size was set to 16, the learning rate was
set to 0.001, and 100 training epochs were performed on one
GPU of the A6000 server. Otherwise, the other settings were
the same as the Conformer experiments described above. The
experimental outcomes of the Conformer and Fast Conformer
model are presented in Table II.

B. Fine-tuned Model with Adapters

This section focuses on adding adapters to the original
model that has been fully fine-tuned based on the BEA-Base

7https://catalog.ngc.nvidia.com/orgs/nvidia/teams/nemo/models/stt en
fastconformer ctc xlarge

8https://catalog.ngc.nvidia.com/orgs/nvidia/teams/nemo/models/stt en
fastconformer ctc large

dataset to further explore the impact of adding adapters on
the fully fine-tuned model. The whole experimental process
consists of two rounds of fine-tuning experiments. First, the
pre-trained English model was fully fine-tuned, and then the
adapter module was added to the fully fine-tuned model to
fine-tune it again. For the Conformer model, in the first round
of the fine-tuning phase, we used the same parameters as [20],
batch size of 32, 200 training epochs, etc. In the second
fine-tuning phase, two types of adapter modules were used,
linear and tiny-attention. During the fine-tuning process, we
set the learning rate to 0.01, training epochs to 100, and other
parameters consistent with the pre-trained model experiments
in the previous subsection, batch size of 16. The experimental
results are shown in Table III. For the Fast Conformer model,
in the first fine-tuning phase, the batch size was 96, the
learning rate was 0.01, and the experiments were trained in
150 epochs. In the second fine-tuning phase, two types of
adapters were used, with a batch size of 96, a learning rate of
0.02, and 50 epochs training. The results of this experiment
are displayed in Table III.

C. Result Analysis

Figure 1 shows the memory consumption of the two fine-
tuning methods in the Conformer model within a single epoch.
The blue line represents a large-sized Conformer model, and
the orange line represents a medium-sized Conformer model.
The dotted line represents the experimental results of full fine-
tuning of the original pre-trained model, while the solid line
represents the experimental results of fine-tuning the original

7 https://catalog.ngc.nvidia.com/orgs/nvidia/teams/nemo/models/stt_en_ 
fastconformer_ctc_xlarge

8 https://catalog.ngc.nvidia.com/orgs/nvidia/teams/nemo/models/stt_en_ 
fastconformer_ctc_large
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periments, we only use linear adapter modules combined with
the English pre-trained model and then fine-tune the model
for experiments based on the Hungarian BEA-Base train-
114 dataset. For data augmentation, SpecAugment [25] and
speed perturbation were applied, using the same configuration
as [20]. Throughout the fine-tuning experimental process, for
each experiment, we set the batch size to 16, and the learning
rate to 0.001, and ran it on a GPU of the A6000 server for
100 epochs.

For the Fast Conformer experiments, we mainly used ex-
tra large and large-sized pre-trained English Fast Conformer
models as foundational models (STT En Fast Conformer-
CTC XLarge7, STT En Fast Conformer-CTC Large8) and
linear type adapter module. We use the same linear adapter
module as the Conformer model experiment above. During the
experiments, the batch size was set to 16, the learning rate was
set to 0.001, and 100 training epochs were performed on one
GPU of the A6000 server. Otherwise, the other settings were
the same as the Conformer experiments described above. The
experimental outcomes of the Conformer and Fast Conformer
model are presented in Table II.
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pre-trained English model was fully fine-tuned, and then the
adapter module was added to the fully fine-tuned model to
fine-tune it again. For the Conformer model, in the first round
of the fine-tuning phase, we used the same parameters as [20],
batch size of 32, 200 training epochs, etc. In the second
fine-tuning phase, two types of adapter modules were used,
linear and tiny-attention. During the fine-tuning process, we
set the learning rate to 0.01, training epochs to 100, and other
parameters consistent with the pre-trained model experiments
in the previous subsection, batch size of 16. The experimental
results are shown in Table III. For the Fast Conformer model,
in the first fine-tuning phase, the batch size was 96, the
learning rate was 0.01, and the experiments were trained in
150 epochs. In the second fine-tuning phase, two types of
adapters were used, with a batch size of 96, a learning rate of
0.02, and 50 epochs training. The results of this experiment
are displayed in Table III.

C. Result Analysis

Figure 1 shows the memory consumption of the two fine-
tuning methods in the Conformer model within a single epoch.
The blue line represents a large-sized Conformer model, and
the orange line represents a medium-sized Conformer model.
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periments, we only use linear adapter modules combined with
the English pre-trained model and then fine-tune the model
for experiments based on the Hungarian BEA-Base train-
114 dataset. For data augmentation, SpecAugment [25] and
speed perturbation were applied, using the same configuration
as [20]. Throughout the fine-tuning experimental process, for
each experiment, we set the batch size to 16, and the learning
rate to 0.001, and ran it on a GPU of the A6000 server for
100 epochs.

For the Fast Conformer experiments, we mainly used ex-
tra large and large-sized pre-trained English Fast Conformer
models as foundational models (STT En Fast Conformer-
CTC XLarge7, STT En Fast Conformer-CTC Large8) and
linear type adapter module. We use the same linear adapter
module as the Conformer model experiment above. During the
experiments, the batch size was set to 16, the learning rate was
set to 0.001, and 100 training epochs were performed on one
GPU of the A6000 server. Otherwise, the other settings were
the same as the Conformer experiments described above. The
experimental outcomes of the Conformer and Fast Conformer
model are presented in Table II.

B. Fine-tuned Model with Adapters

This section focuses on adding adapters to the original
model that has been fully fine-tuned based on the BEA-Base
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dataset to further explore the impact of adding adapters on
the fully fine-tuned model. The whole experimental process
consists of two rounds of fine-tuning experiments. First, the
pre-trained English model was fully fine-tuned, and then the
adapter module was added to the fully fine-tuned model to
fine-tune it again. For the Conformer model, in the first round
of the fine-tuning phase, we used the same parameters as [20],
batch size of 32, 200 training epochs, etc. In the second
fine-tuning phase, two types of adapter modules were used,
linear and tiny-attention. During the fine-tuning process, we
set the learning rate to 0.01, training epochs to 100, and other
parameters consistent with the pre-trained model experiments
in the previous subsection, batch size of 16. The experimental
results are shown in Table III. For the Fast Conformer model,
in the first fine-tuning phase, the batch size was 96, the
learning rate was 0.01, and the experiments were trained in
150 epochs. In the second fine-tuning phase, two types of
adapters were used, with a batch size of 96, a learning rate of
0.02, and 50 epochs training. The results of this experiment
are displayed in Table III.

C. Result Analysis

Figure 1 shows the memory consumption of the two fine-
tuning methods in the Conformer model within a single epoch.
The blue line represents a large-sized Conformer model, and
the orange line represents a medium-sized Conformer model.
The dotted line represents the experimental results of full fine-
tuning of the original pre-trained model, while the solid line
represents the experimental results of fine-tuning the original

https://catalog.ngc.nvidia.com/orgs/nvidia/teams/nemo/models/stt_en_fastconformer_ctc_xlarge
https://catalog.ngc.nvidia.com/orgs/nvidia/teams/nemo/models/stt_en_fastconformer_ctc_xlarge
https://catalog.ngc.nvidia.com/orgs/nvidia/teams/nemo/models/stt_en_fastconformer_ctc_large
https://catalog.ngc.nvidia.com/orgs/nvidia/teams/nemo/models/stt_en_fastconformer_ctc_large
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pre-trained model with the addition of a linear adapter to it.
Throughout the experiment, the batch size of training was set
to 16, and GPU memory utilization was logged at intervals
of 5 seconds. The results show that, regardless of model size,
training with a linear adapter takes significantly less memory
than direct full fine-tuning the Conformer model. In addition,
when calculating the training duration of one epoch, it is
clear that the training duration is relatively short for the linear
adapter experiments.

Fig. 1. GPU memory consumption from fine-tuning experiments on medium
and large-sized English pre-trained Conformer models. Direct full fine-
tuning the English pre-trained model is denoted by the dotted line, whereas
incorporating adapters into the pre-trained model for fine-tuning is illustrated
with the solid line.

Fig. 2. GPU memory consumption from fine-tuning experiments on large-
sized English pre-trained Fast Conformer models. Direct full fine-tuning the
English pre-trained model is shown by the dotted line, whereas incorporating
adapters into the pre-trained model for fine-tuning is illustrated by the solid
line.

Figure 2 shows the GPU memory recorded every 5 seconds
in two fine-tuning experiments using the English pre-trained
extra large and large-sized Fast Conformer model. The dotted
line indicates fully fine-tuning the pre-trained model directly,
and the solid line indicates that the linear adapter is added to
the pre-trained model for fine-tuning. The training batch size
is also set as 16.

TABLE IV
RESULTS SHOW THE MAXIMUM GPU MEMORY CONSUMED IN THE

FINE-TUNING EXPERIMENTS FOR CONFORMER AND FAST CONFORMER
MODELS. CORRESPONDS TO THE VALUES IN FIGURE 1 AND 2.

Foundational model Adapter GPU memory (MiB)

Conformer-Large - 23 104
Linear 17 538

Conformer-Medium - 11 724
Linear 10 072

FastConformer-XLarge - 23 662
Linear 11 656

FastConformer-Large - 9 048
Linear 5 832

As can be observed from Figure 2, for fine-tuning linear
adapter experiments, both the training duration and memory
usage required were significantly reduced compared to the full
fine-tuning experiment. Comparing the results of Figure 1 and
Figure 2, it can be clearly seen that the training time of the Fast
Conformer model is much shorter than that of the traditional
Conformer model.

Observing Table II, When fine-tuning a cross-language pre-
trained model with an adapter added, lower word error rates
can also be achieved. However, for Fast Conformer model
experiments, the results obtained are significantly worse than
those of the Conformer model. We infer that the addition of the
adapter to the Fast Conformer resulted in a poorer convergence
of the overall model. By comparing the results of full fine-
tuning experiments in Table III, the Fast Conformer results
in a lower WER in a shorter training duration relative to the
Conformer model, demonstrating the superiority of the Fast
Conformer model. The overall analysis of Table III shows
that for adding separately two types of adapter modules into
the Fast Conformer and Conformer model, the experimental
results have a relatively limited improvement on both CV and
the BEA-Base datasets.

Comparing the results in the two tables, we found that
adding adapters to the Conformer model and training for cross-
lingual transfer learning did not show superior performance
over the full fine-tuning results on the BEA-Base dataset. But
it is worth noting that in the experiment of adding an adapter
into the pre-trained Conformer model, the Xlarge-sized and
large-sized models achieved lower character/word error rates
(CER/WER) on the CommonVoice dataset, 9.53%/25.22%
and 10.58%/27.27% respectively. By comparing the results
in Table II (27.27%) and Table III (34.85%), the WER of
the large-sized model on the CommonVoice dataset relatively
decreased by about 21.7% when incorporating adapter mod-
ules. Comparing the results of the Fast Conformer model in
the two tables, adding the adapter directly to the English
pre-trained Fast Conformer model does not provide better
results based on the BEA-Base dataset. Nevertheless, on the
CommonVoice dataset, we still obtained similar WER results
(39.48%) compared to the full fine-tuning results (39.13%).
We infer that adding adapters to the foundational model for
cross-lingual transfer learning did not significantly improve
the word error rate on the original dataset. However, the
model performs consistently on multiple datasets with wider



Assessing the Efficacy of Adapters in Cross-Language Transfer 
Learning For Low-Resource Automatic Speech Recognition

DECEMBER 2024 • VOLUME XVI • NUMBER 46

INFOCOMMUNICATIONS JOURNAL

5

TABLE V
CER(%) / WER(%) ZERO-SHOT RESULTS OF DIFFERENT SIZES WHISPER MODEL ON HUNGARIAN DATASET.

Model Total num BEA-Base CV12
params dev-repet dev-spont eval-repet eval-spont test

whisper-small 242M 6.71 / 32.99 19.67 / 41.25 7.47 / 35.21 20.22 / 41.80 9.83 / 41.05
whisper-medium 764M 4.82 / 21.92 17.97 / 37.18 5.18 / 22.33 19.46 / 38.67 6.91 / 27.61
whisper-large-v2 1.54B 3.74 / 17.54 17.06 / 33.17 3.99 / 18.04 17.06 / 32.76 5.27 / 20.41

applicability and robustness. In contrast, fine-tuning tends to
overfit the current dataset, resulting in poorer performance on
external datasets. In addition, by comparing the results in two
figures, we concluded that the adapter approach significantly
reduces training time and GPU memory consumption.

IV. INCORPORATING ADAPTERS INTO MULTILINGUAL
PRE-TRAINED MODELS

In the study of adding the adapter module into multilingual
pre-trained models, we chose the typical weakly supervised
model Whisper [5] as the foundational model. Different from
the Conformer model experiments, the Whisper model has
been trained on multiple languages, including Hungarian, and
thus fine-tuning is a multilingual to monolingual transfer
learning process.

This section carries out related experiments by using three
Whisper models of different sizes. First, this study directly
evaluate the speech recognition accuracy of Whisper models
on Hungarian datasets. The CER and WER in the experimental
results in Table V are normalized results. The models and
codes used are from the Speech Brain [26], [27]. Among the
zero-shot results, the experimental results of Whisper-large-V2
and Whisper-medium were quoted from paper [20]. Second,
fine-tuning the Whisper model on the Hungarian dataset.
Last, two types of Parameter-Efficient Fine-Tuning (PEFT)
methods [11], namely Low-Rank Adaptation (LoRA) [28]
and Adaptive Low-Rank Adaptation (AdaLoRA) [29] were
used for the experiment. The implementation of the PEFT
method aims to minimize the number of parameters while
maintaining the performance of the model, thus improving
the parameter efficiency. The code we used for train and
evaluating the Whisper experiments in this section is available
at https://github.com/MengYan0901/Whisper-Experiments.

This section focuses on the effect of integrating the Whisper
model with two PEFT methods on the accuracy of speech
recognition in Hungarian. Compared with the experimental
group of the Conformer model, the effect of adding adapters
to the foundational model trained by the target language
in transfer learning is further discussed. Different sizes of
Whisper models (Large-V29, Medium10, Small11) were used
and trained based on the BEA-Base train-114 dataset. In the
testing phase, the CV test set and the BEA-Base test set
were used to evaluate the performance of the model. Tests
on multiple datasets aim to more comprehensively examine
the experimental results of model training.

9https://huggingface.co/openai/whisper-large-v2
10https://huggingface.co/openai/whisper-medium
11https://huggingface.co/openai/whisper-small

A. Fine-tuning Whisper model

In this experiment, Whisper models are fine-tuned across
three distinct scales. Specifically, for the Whisper-large-v2
model, the approach adopted in Paper [20] was used, where
the encoder part was frozen and only the decoder part was
fine-tuned. Conversely, for the Whisper-medium and Whisper-
small models, fine-tune the parameters of the entire model. The
outcomes of these experiments are shown in Table VI. The
results of Whisper-V2 and Whisper-Medium are cited from
the paper [20]. Regarding the experiments of the Whisper-
Small model, the learning rate is set to 3e-4, the batch size
to 16, and training is conducted for 5 epochs on one GPU
of the A6000 server. The results distinctly demonstrate a
notable decrease in word error rate (WER) as the number of
model parameters increased, showing significant improvement,
particularly within the CommonVoice dataset.

B. Incorporating Adapters into Whisper Model

Low-Rank Adaptation (LoRA) [28] is a popular Parameter-
Efficient Fine-Tuning (PEFT) method [11]. When LoRA is
used for downstream fine-tuning tasks, the parameters of the
foundational model remain frozen throughout the training
process, while the trainable rank decomposition matrices are
integrated into each layer of the model transformer architec-
ture [28]. This strategy significantly reduces the trainable pa-
rameters of the model. As indicated in the ”Trainable params”
column of Table VII, trainable parameters are only approxi-
mately 1% of the total model parameters, thereby reducing
training duration and GPU memory usage. Adaptive Low-
Rank Adaptation (AdaLoRA) [29] is a derivative of LoRA
that manages the count of parameters introduced by LoRA.
Throughout training, AdaLoRA will allocate parameters to
different weight matrices based on the degree of adaptation to
the task. The weight matrix that is more adaptable to the task
will be assigned more parameters for training. As shown in the
Trainable params column of Table VIII, trainable parameters
only account for about 0.5% of all model’s parameters.

Our training procedure follows the same configuration as
the last fine-tuning section, but we change the learning rate
to 1e-3 for both LoRA and AdaLoRA experiments, and the
batch size remains unchanged at 16, still running on one GPU
of the A6000 server for 5 epochs. By integrating two types
of adapters (namely LoRA and AdaLoRA) into the Whisper
model, the experimental results given in Tables VII and VIII
show the impact of their application.
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only account for about 0.5% of all model’s parameters.

Our training procedure follows the same configuration as
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Assessing the Efficacy of Adapters in Cross-Language Transfer  
Learning For Low-Resource Automatic Speech Recognition

INFOCOMMUNICATIONS JOURNAL

DECEMBER 2024 • VOLUME XVI • NUMBER 4 7

6

TABLE VI
CER(%) / WER(%). RESULTS BASED ON DIRECT FINE-TUNING THE WHISPER MODEL ON THE HUNGARIAN DATASET.

Model Total num Trainable BEA-Base CV12
params params dev-repet dev-spont eval-repet eval-spont test

whisper-small 242M 100% 3.15 / 12.21 9.70 / 26.44 4.17 / 14.35 10.56 / 28.63 20.59 / 58.23
whisper-medium 764M 100% 1.31 / 5.38 7.96 / 18.83 1.50 / 4.90 9.33 / 20.60 7.83 / 27.93
whisper-large-v2 1.54B 58.75% 1.01 / 4.45 7.10 / 16.96 1.23 / 4.37 8.46 / 18.69 6.19 / 23.69

TABLE VII
CER(%) / WER(%). RESULTS BASED ON INCORPORATING LOW-RANK ADAPTATION (LORA) FOR FINE-TUNING ON THE HUNGARIAN DATASET,

UTILIZING WHISPER AS THE FOUNDATIONAL MODEL.

Founditional Total num Trainable BEA-Base CV12
model params params dev-repet dev-spont eval-repet eval-spont test

whisper-small 245M 1.44% 3.37 / 15.47 7.48 / 23.07 3.71 / 15.40 8.75 / 25.59 10.25 / 40.21
whisper-medium 773M 1.22% 2.12 / 10.02 5.80 / 17.91 2.61 / 10.71 6.36 / 19.37 7.66 / 31.29
whisper-large-v2 1.56B 1.01% 1.65 / 7.13 4.74 / 14.89 1.68 / 6.66 5.08 / 15.56 5.91 / 24.22

TABLE VIII
CER(%) / WER(%). RESULTS BASED ON INCORPORATING ADAPTIVE LOW-RANK ADAPTATION (ADALORA) FOR FINE-TUNING ON THE HUNGARIAN

DATASET, UTILIZING WHISPER AS THE FOUNDATIONAL MODEL.

Founditional Total num Trainable BEA-Base CV12
model params params dev-repet dev-spont eval-repet eval-spont test

whisper-small 243M 0.55% 4.32 / 19.49 9.21 / 26.72 4.84 / 20.23 9.35 / 27.46 10.71 / 41.68
whisper-medium 767M 0.46% 2.40 / 10.68 5.72 / 17.67 2.55 / 10.80 6.24 / 18.97 6.62 / 27.49
whisper-large-v2 1.55B 0.38% 1.73 / 8.15 4.86 / 15.17 1.81 / 7.53 5.21 / 15.77 5.47 / 22.64

Fig. 3. GPU memory consumption from fine-tuning experiments on medium-
sized and large-sized Whisper models in one epoch. Direct fine-tuning is
indicated by the dotted line, incorporating LoRA into the model for fine-
tuning is illustrated by the solid light blue line, and incorporating AdaLoRA
into the model for fine-tuning is shown by the solid blue line.

C. Result Analysis

In Tables VI, VII and VIII, the data in bold font represent
the best results obtained in the three experiments. It is clear
that the performance of the model improves with increasing
the number of model parameters whether LoRA or AdaLoRA
is used. Comparing results in three tables, particularly in spon-
taneous speech tasks, both LoRA and AdaLoRA demonstrate
superior performance, with the lowest WER 14.85%/15.16%
on the dev-spont/eval-spont datasets of the BEA-Base dataset.

Figure 3 shows the memory occupation when fine-tuning the

TABLE IX
RESULTS SHOWS THE MAXIMUM GPU MEMORY CONSUMED IN THE

FINE-TUNING EXPERIMENTS FOR WHISPER MODELS (CORRESPONDS TO
THE VALUE IN THE FIGURE 3).

Foundational model Adapter GPU memory (MiB)

whisper-medium
- 26 398

LoRA 17 354
AdaLoRA 17 258

whisper-small
- 14 156

LoRA 12 260
AdaLoRA 12 228

Whisper model in three different ways. Since the experiments
with the whisper-large-V2 model were only trained on the
decoder part of the model’s parameters, it is not suitable
for memory occupation comparisons. The results in Table IX
correspond to the maximum memory occupied by each ex-
periment in Figure 3. It can be observed from Figure 3 and
Table IX that memory occupation can be significantly reduced
when fine-tuning the Whisper model with LoRA or AdaLoRA.
Especially for the medium-sized model, the memory occupa-
tion can be reduced by approximately 1/3, and the effect of
reducing memory occupation is more significant as the model
parameters increase. By comparing the CER/WER results of
three tables, it can be concluded that for the Whisper model,
the addition of an adapter module achieves a reduction in
memory occupation and an improvement in speech recognition
accuracy.



Assessing the Efficacy of Adapters in Cross-Language Transfer 
Learning For Low-Resource Automatic Speech Recognition

DECEMBER 2024 • VOLUME XVI • NUMBER 48

INFOCOMMUNICATIONS JOURNAL

7

V. CONCLUSION

In this paper, we added adapter modules to different foun-
dational models for automatic speech recognition tasks. When
adding the adapter module to the foundational model that
has not been trained in the target language, the test accuracy
on the BEA-Base dataset was decreased while a significant
improvement could be obtained on the CV dataset. We inferred
that adapters can preserve the model’s generalization ability
without over-fitting the model to a specific training dataset,
thus helping to maintain model excellence across multiple
datasets. For a multilingual Whisper model (pre-) trained in
Hungarian, adding the adapter module significantly reduced
the word error rate on both datasets. The comparison of
these two models shows that the addition of adapters can
benefit from the foundational model (pre-) trained on the target
language and achieve higher recognition accuracy. Further-
more, the addition of the adapter module showed a significant
reduction in GPU memory consumption for all models during
fine-tuning. Future research will further explore the adapter’s
efficacy for adding to other ASR models in cross-language
transfer learning.
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